Now, 2 x (+) dt 2 50, d2x(+) dt 2 -1 d2x(1) dt 2 is +2 J2x(+) ct 2 + 1 +2 = -15(++ 2) + 25 (1-0) + 15 (t-1) = -√(x + 2) + 251€) + 5 (+-2) By using differentiation in time domain property, the fourier tram form is jw2 (jw) ² x 1w) = -1.e م لم + 2 + +2+ How did he get the inside the circle

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
i need the answer quickly
Now, 2 x (+) is
dt 2
50,
d2x(+)
dt 2
d2x(1)
dt 2
2
G
+2
d2x(+)
at 2
= -15(+ + 2) + 25 (1-0) + 15 (t-1)
-S(+2) + 25H) + 5 (1-2)
By using differentiation in time domain property,
the fourier framform is
(jw) ² x 1w) = -1.e
+ 1
jw2
+2
20 لم +2 +
How did he get the
value inside the circle
ni
Transcribed Image Text:Now, 2 x (+) is dt 2 50, d2x(+) dt 2 d2x(1) dt 2 2 G +2 d2x(+) at 2 = -15(+ + 2) + 25 (1-0) + 15 (t-1) -S(+2) + 25H) + 5 (1-2) By using differentiation in time domain property, the fourier framform is (jw) ² x 1w) = -1.e + 1 jw2 +2 20 لم +2 + How did he get the value inside the circle ni
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,