Note: Students should use the tool link: https://mathcracker.com/normal-probability-calculator-sampling-distributions (f. 1. A prototype automotive tire has a design life of 38,500 miles with a standard deviation of 2,500 miles. The manufacturer tests 60 such tires. On the assumption that the actual population mean is 38,500 miles and the actual population standard deviation is 2,500 miles, find the probability that the sample mean will be less than 36,000 miles. Assume that the distribution of lifetimes of such tires is normal. (a) Let X = number of miles on a single tire. Write the question above in terms of this variable X. %3D (b) Using the software tool above, find the probability stated on part (a) (c) Using the software tool above, graph the probability of stated on part (b) 6 An automobile battery manufacturer claims that its midgrade battery has a mean life of 50 months with a standard deviation of 6 months. Suppose the distribution of battery lives of this particular brand is approximately normal. On the assumption that the claims are true, find the probability that a randomly selected battery of this type will last less than 48 months. (Use the software link for every question) (a) Let X = number of months a battery will last. Write the question above in terms of this variable X (b) Find the probability that a single battery of this type will last less than 48 months. (c) Find the probability that the mean of a random sample of 36 batteries will be less than 48 months. (d) Why do you think the values from part (b) and part (c) are different? Explain.
Addition Rule of Probability
It simply refers to the likelihood of an event taking place whenever the occurrence of an event is uncertain. The probability of a single event can be calculated by dividing the number of successful trials of that event by the total number of trials.
Expected Value
When a large number of trials are performed for any random variable ‘X’, the predicted result is most likely the mean of all the outcomes for the random variable and it is known as expected value also known as expectation. The expected value, also known as the expectation, is denoted by: E(X).
Probability Distributions
Understanding probability is necessary to know the probability distributions. In statistics, probability is how the uncertainty of an event is measured. This event can be anything. The most common examples include tossing a coin, rolling a die, or choosing a card. Each of these events has multiple possibilities. Every such possibility is measured with the help of probability. To be more precise, the probability is used for calculating the occurrence of events that may or may not happen. Probability does not give sure results. Unless the probability of any event is 1, the different outcomes may or may not happen in real life, regardless of how less or how more their probability is.
Basic Probability
The simple definition of probability it is a chance of the occurrence of an event. It is defined in numerical form and the probability value is between 0 to 1. The probability value 0 indicates that there is no chance of that event occurring and the probability value 1 indicates that the event will occur. Sum of the probability value must be 1. The probability value is never a negative number. If it happens, then recheck the calculation.
Only question 2a,b,c, and d.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 5 images