Note: N(A) denotes the null space of the matrix A, while R(A) stands for the range of A, viz., the column space of A. = 1. (a) Let matrices A, B, C be such that A R(B), whereas N(C) ≤ N(A). BC. Show that R(A) C (b) Show that N(ATA) N(A) for any matrix A, even rectangular. (Hint: Ax = 0 iff || Ax ||= 0.) (c) Using (b), show that R(ATA) = R(AT). =
Note: N(A) denotes the null space of the matrix A, while R(A) stands for the range of A, viz., the column space of A. = 1. (a) Let matrices A, B, C be such that A R(B), whereas N(C) ≤ N(A). BC. Show that R(A) C (b) Show that N(ATA) N(A) for any matrix A, even rectangular. (Hint: Ax = 0 iff || Ax ||= 0.) (c) Using (b), show that R(ATA) = R(AT). =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Matrix Analysis parctice question, please show clear, thanks
![Note: N(A) denotes the null space of the matrix A, while R(A) stands for
the range of A, viz., the column space of A.
1. (a) Let matrices A, B, C be such that A
R(B), whereas N(C) ≤ N(A).
(b) Show that N(ATA)
(Hint: Ax
=
=
0 iff || Ax ||= 0.)
=
N(A) for any matrix A, even rectangular.
BC. Show that R(A) ≤
=
(c) Using (b), show that R(ATA) = R(AT).
=
(Hint 1. Let A, B be matrices such that R(A) ≤ R(B). If rk(A) =
rk(B), then show that the subspaces are equal.
Hint 2. rank + nullity dimension of codomain).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F979d0aba-5428-414f-a3ba-5510f0301082%2F7115556f-42ce-4adc-968f-a59fc261cc5b%2F6zby2dk_processed.png&w=3840&q=75)
Transcribed Image Text:Note: N(A) denotes the null space of the matrix A, while R(A) stands for
the range of A, viz., the column space of A.
1. (a) Let matrices A, B, C be such that A
R(B), whereas N(C) ≤ N(A).
(b) Show that N(ATA)
(Hint: Ax
=
=
0 iff || Ax ||= 0.)
=
N(A) for any matrix A, even rectangular.
BC. Show that R(A) ≤
=
(c) Using (b), show that R(ATA) = R(AT).
=
(Hint 1. Let A, B be matrices such that R(A) ≤ R(B). If rk(A) =
rk(B), then show that the subspaces are equal.
Hint 2. rank + nullity dimension of codomain).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)