Note: Given that SAT scores are reported as whole numbers round off your answer for X to a whole number. The z-values found using Excel are rounded off to the thousandths place, which is three decimal places to the right of the decimal point. When using the Area Under the Curve table, z-values are reported with two digit places passed the decimal point. Using Excel or the Table, the value for X should be very close. The values found using Excel are more precise. 1. What SAT score do you need to be among the top 0.5 percent? X z-value 1,025 1,025 z= NORM.S.INV(?) zw/Excel Area Under the Curve Table 100 100 2. What SAT score do you need to be among the top 2.5 percent? z = NORM.S.INV(?) zw/Excel Area Under the Curve Table Z-value 1,025 1,025 100 100 3. What z-value is the cut-off point for the bottom 10 percent? z = NORM.S.INV(?) zw/Excel Area Under the Curve Table X z-value σ 1,025 1,025 100 100 4. What z-value is the cut-off point for the bottom 1 percent? z = NORM.S.INV(?) zw/Excel Area Under the Curve Table X z-value 1,025 1,025 100 100

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Please answer all the questions and is possible how what to plug in on blank spots thanks
Curve Table.
Population Mean, µ, = 1,025
| Population Standard Deviation, o, 100
X = µ + zo
You can find the z-values using either of the two z-values tables or by using the formula found in the
assignment and on the Excel file 09_SolvingforX.xlsx. The Excel function for finding the preproperate z-value
is:
= NORM.S.INV(Probability)
When using Excel, please noted that the Area on the Curve starts from the left of the curve. Excel finds the z-
value differently that the Area Under the Curve table. The Area Under the Curve table starts and the mean,
which is the center of the curve. And, it only covers the right side of the normal curve, which means that all z-
values on this table are positive. But, because the normal curve is symmetrical, z-values on the left side of the
curve will be negalive. The probabilities, however, are always positive. So, the z-value for the lowest 1% will
be -2.33 (using the Area Under the Curve Table) and 2.33 for the highest 1%. To find the z-value for the
lowest 1%, the formula for Excel would be =NORM.S.INC(0.01) while the formula for the top 1% would be
=NORM.S.INV(0.99).
Note: Given that SAT scores are reported as whole numbers round off your answer for X to a whole
number. The z-values found using Excel are rounded off to the thousandths place, which is three
decimal places to the right of the decimal point. When using the Area Under the Curve table, z-values
are reported with two digit places passed the decimal point. Using Excel or the Table, the value for X
should be very close. The values found using Excel are more precise.
1. What SAT score do you need to be among the top 0.5 percent?
z= NORM.S.INV(?)
zw/Excel
Area Under the Curve Table
Z-value
100
1,025
1,025
100
2. What SAT score do you need to be among the top 2.5 percent?
z= NORM.S.INV(?).
zw/Excel
Area Under the Curve Table
X
z-value
100
1,025
1,025
100
3. What z-value is the cut-off point for the bottom 10 percent?
z = NORM.S.INV(?)
zw/Excel
Area Under the Curve Table
Z-value
1,025
1,025
100
100
4. What z-value is the cut-off point for the bottom 1 percent?
z = NORM.S.INV(?)
zw/Excel
Area Under the Curve Table
X
Z-value
100
1,025
1,025
100
O Focus
E --
* Accessibility: Investigate
Transcribed Image Text:Curve Table. Population Mean, µ, = 1,025 | Population Standard Deviation, o, 100 X = µ + zo You can find the z-values using either of the two z-values tables or by using the formula found in the assignment and on the Excel file 09_SolvingforX.xlsx. The Excel function for finding the preproperate z-value is: = NORM.S.INV(Probability) When using Excel, please noted that the Area on the Curve starts from the left of the curve. Excel finds the z- value differently that the Area Under the Curve table. The Area Under the Curve table starts and the mean, which is the center of the curve. And, it only covers the right side of the normal curve, which means that all z- values on this table are positive. But, because the normal curve is symmetrical, z-values on the left side of the curve will be negalive. The probabilities, however, are always positive. So, the z-value for the lowest 1% will be -2.33 (using the Area Under the Curve Table) and 2.33 for the highest 1%. To find the z-value for the lowest 1%, the formula for Excel would be =NORM.S.INC(0.01) while the formula for the top 1% would be =NORM.S.INV(0.99). Note: Given that SAT scores are reported as whole numbers round off your answer for X to a whole number. The z-values found using Excel are rounded off to the thousandths place, which is three decimal places to the right of the decimal point. When using the Area Under the Curve table, z-values are reported with two digit places passed the decimal point. Using Excel or the Table, the value for X should be very close. The values found using Excel are more precise. 1. What SAT score do you need to be among the top 0.5 percent? z= NORM.S.INV(?) zw/Excel Area Under the Curve Table Z-value 100 1,025 1,025 100 2. What SAT score do you need to be among the top 2.5 percent? z= NORM.S.INV(?). zw/Excel Area Under the Curve Table X z-value 100 1,025 1,025 100 3. What z-value is the cut-off point for the bottom 10 percent? z = NORM.S.INV(?) zw/Excel Area Under the Curve Table Z-value 1,025 1,025 100 100 4. What z-value is the cut-off point for the bottom 1 percent? z = NORM.S.INV(?) zw/Excel Area Under the Curve Table X Z-value 100 1,025 1,025 100 O Focus E -- * Accessibility: Investigate
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman