A golfer tees off from a location precisely at Φi = 35.0° north latitude. He hits the ball due south, with range 285 m. The ball’s initial velocity is at 48.0° above the horizontal. Suppose air resistance is negligible for the golf ball. (a) For how long is the ball in flight? The cup is due south of the golfer’s location, and the golfer would have a hole-in-one if the Earth were not rotating. The Earth’s rotation makes the tee move in a circle of radius RE cos Φi = (6.37 x 106 m) cos 35.0° as shown. The tee completes one revolution each day. (b) Find the eastward speed of the tee relative to the stars. The hole is also moving east, but it is 285 m farther south and thus at a slightly lower latitude Φf. Because the hole moves in a slightly larger circle, its speed must be greater than that of the tee. (c) By how much does the hole’s speed exceed that of the tee? During the time interval the ball is in flight, it moves upward and downward as well as southward with the projectile motion, but it also moves eastward with the speed you found in part (b). The hole moves to the east at a faster speed, however, pulling ahead of the ball with the relative speed you found in part (c). (d) How far to the west of the hole does the ball land?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps