Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Concept explainers
Equations and Inequations
Equations and inequalities describe the relationship between two mathematical expressions.
Linear Functions
A linear function can just be a constant, or it can be the constant multiplied with the variable like x or y. If the variables are of the form, x2, x1/2 or y2 it is not linear. The exponent over the variables should always be 1.
Question
Solve Q10, 11, 12 explaining detailly each step
![MATHEMATICAL INDUCTION
1. Prove by mathematical induction that for all positive integral values of n,
(1+ 1)(2n + 1). Hence or otherwise, evaluate E"=2r²(r –1)
Lr=1
3D2
1
2. Using mathematical induction, prove that 2"=1
for all positive integral values of
4r 2 - 1
2n+1
n.
3. Given thatn is a positive integer, prove by induction that, the 7"+ 5 is divisible by 6. Guess
a common factor of 5"+ 3 for all positive integers n and prove your guess by induction.
4. Prove by mathematical induction that for all positive integer n,
2n(n+2)
E=1 2r(r + 1) =
5. (1) One of the statements that follow is true and the other is false. Prove the true statement
and give a counter example to disprove the false statement.
a. For all two dimensional vectors a, b, c, a.b = a.c →b = c
b. For all positive real numbers a, b a+b > Vab
(ii)Prove, by mathematical induction that r(2r + 1) = -(n+1)(4n+5)
6. a. Prove, by mathematical induction, that (4r + 3) = 2n2 + 5n
b. Prove, by mathematical induction that /2 is not a rational number (you may assume
that the square of an odd integer is always odd).
7. prove by mathematical induction that ,
8. Prove by mathematical induction that 5"- 4n - 1 is divisible by 16, for all positive integers
r (r+1)
n+1
n.
9. Prove by mathematical induction that 8"-7n +6 is a multipie of 7, n e Z*
n(n+1)(4n--1)
10. Prove by induction that =1r(r - 1) :
12
11. Prove by use of mathematical induction, that , r
12. DProve by mathematical induction that: 9"-1 is divisible by 8, for ail positive integers n. ii)
(n + 1)2
3.
Determine the value(s) of x for which o
K+1/
4.
13. Prove by mathematical induction, that: r(r + 1)
1.
=
n (n+1) (n+2), for all positive
3.
integers n.
14. Prove by mathematical induction that: 2-1(2 + 3r) =-(3n + 7), for all positive integers
n.
Prove by mathematical induction that 3 + 7 is divisible by 8 for all integers n > 0](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5a6d9c67-6f13-49d2-ac4d-2d996f90a88b%2F3f38cc15-71c2-4922-8331-34202bb49d15%2Fez5m7cl_processed.jpeg&w=3840&q=75)
Transcribed Image Text:MATHEMATICAL INDUCTION
1. Prove by mathematical induction that for all positive integral values of n,
(1+ 1)(2n + 1). Hence or otherwise, evaluate E"=2r²(r –1)
Lr=1
3D2
1
2. Using mathematical induction, prove that 2"=1
for all positive integral values of
4r 2 - 1
2n+1
n.
3. Given thatn is a positive integer, prove by induction that, the 7"+ 5 is divisible by 6. Guess
a common factor of 5"+ 3 for all positive integers n and prove your guess by induction.
4. Prove by mathematical induction that for all positive integer n,
2n(n+2)
E=1 2r(r + 1) =
5. (1) One of the statements that follow is true and the other is false. Prove the true statement
and give a counter example to disprove the false statement.
a. For all two dimensional vectors a, b, c, a.b = a.c →b = c
b. For all positive real numbers a, b a+b > Vab
(ii)Prove, by mathematical induction that r(2r + 1) = -(n+1)(4n+5)
6. a. Prove, by mathematical induction, that (4r + 3) = 2n2 + 5n
b. Prove, by mathematical induction that /2 is not a rational number (you may assume
that the square of an odd integer is always odd).
7. prove by mathematical induction that ,
8. Prove by mathematical induction that 5"- 4n - 1 is divisible by 16, for all positive integers
r (r+1)
n+1
n.
9. Prove by mathematical induction that 8"-7n +6 is a multipie of 7, n e Z*
n(n+1)(4n--1)
10. Prove by induction that =1r(r - 1) :
12
11. Prove by use of mathematical induction, that , r
12. DProve by mathematical induction that: 9"-1 is divisible by 8, for ail positive integers n. ii)
(n + 1)2
3.
Determine the value(s) of x for which o
K+1/
4.
13. Prove by mathematical induction, that: r(r + 1)
1.
=
n (n+1) (n+2), for all positive
3.
integers n.
14. Prove by mathematical induction that: 2-1(2 + 3r) =-(3n + 7), for all positive integers
n.
Prove by mathematical induction that 3 + 7 is divisible by 8 for all integers n > 0
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education