Next, to solve for y we apply the inverse Laplace transform - to each term of £{y}. Doing so gives the following result. We then use linearity to rewrite the terms on the right side of the equation. 1 18 1 x{y} = 3/6 (²) - 38 (5²1) + 3230 (5²6) - s 35 y(t) = y(t) = -1, = 1 18 1 -{()}. ( ² )} - 2 - ¹({ ¹8 ( ²₁ )} 36 35 1 - 2 - 1 { 1 } - 18 % - L- 36 35 Applying these gives the following result. 1 18 36 μ(1). u(t) 35 - Transform 11: If L{f(t)} = F(s) = == e². s-1 403 -6t ∙e 504 We now recall the following Laplace transforms from Appendix C. Transform 1: If £{f(t)} = F(s) ==—₁ , then f(t) = 1. S + 1 s-a "" + 823 61 360 823 360 403 1 e-1). + £¯ L X 504 L then f(t)= eat s +6 823 360 s- 1 (6 +-6)} - 2 - 1 504 ( 5 + 6) 1 11 ¹5+6] 11 S-6 403 504 L

Calculus For The Life Sciences
2nd Edition
ISBN:9780321964038
Author:GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher:GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Chapter6: Applications Of The Derivative
Section6.CR: Chapter 6 Review
Problem 19CR
icon
Related questions
Question
### Applying the Inverse Laplace Transform

To solve for \( y \), we apply the inverse Laplace transform \( \mathcal{L}^{-1} \) to each term of \( \mathcal{L}\{y\} \). Doing so gives the following result. We then use linearity to rewrite the terms on the right side of the equation.

\[
\mathcal{L}\{y\} = \frac{1}{36} \left( \frac{1}{s} \right) - \frac{18}{35} \left( \frac{1}{s-1} \right) + \frac{823}{360} \left( \frac{1}{s-6} \right) - \frac{403}{504} \left( \frac{1}{s+6} \right)
\]

\[
y(t) = \mathcal{L}^{-1} \left\{ \frac{1}{36} \left( \frac{1}{s} \right) - \mathcal{L}^{-1} \left\{ \frac{18}{35} \left( \frac{1}{s-1} \right) + \mathcal{L}^{-1} \left\{ \frac{823}{360} \left( \frac{1}{s-6} \right) - \mathcal{L}^{-1} \left\{ \frac{403}{504} \left( \frac{1}{s+6} \right) \right\} \right\} \right\}
\]

Breaking it down using linearity:

\[
= \frac{1}{36} \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\} - \frac{18}{35} \mathcal{L}^{-1} \left\{ \frac{1}{s-1} \right\} + \frac{823}{360} \mathcal{L}^{-1} \left\{ \frac{1}{s-6} \right\} - \frac{403}{504} \mathcal{L}^{-1} \left\{ \frac{1}{s+6} \right\}
\]

### Laplace Transform Properties

We now recall the following Laplace transforms
Transcribed Image Text:### Applying the Inverse Laplace Transform To solve for \( y \), we apply the inverse Laplace transform \( \mathcal{L}^{-1} \) to each term of \( \mathcal{L}\{y\} \). Doing so gives the following result. We then use linearity to rewrite the terms on the right side of the equation. \[ \mathcal{L}\{y\} = \frac{1}{36} \left( \frac{1}{s} \right) - \frac{18}{35} \left( \frac{1}{s-1} \right) + \frac{823}{360} \left( \frac{1}{s-6} \right) - \frac{403}{504} \left( \frac{1}{s+6} \right) \] \[ y(t) = \mathcal{L}^{-1} \left\{ \frac{1}{36} \left( \frac{1}{s} \right) - \mathcal{L}^{-1} \left\{ \frac{18}{35} \left( \frac{1}{s-1} \right) + \mathcal{L}^{-1} \left\{ \frac{823}{360} \left( \frac{1}{s-6} \right) - \mathcal{L}^{-1} \left\{ \frac{403}{504} \left( \frac{1}{s+6} \right) \right\} \right\} \right\} \] Breaking it down using linearity: \[ = \frac{1}{36} \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\} - \frac{18}{35} \mathcal{L}^{-1} \left\{ \frac{1}{s-1} \right\} + \frac{823}{360} \mathcal{L}^{-1} \left\{ \frac{1}{s-6} \right\} - \frac{403}{504} \mathcal{L}^{-1} \left\{ \frac{1}{s+6} \right\} \] ### Laplace Transform Properties We now recall the following Laplace transforms
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Calculus For The Life Sciences
Calculus For The Life Sciences
Calculus
ISBN:
9780321964038
Author:
GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher:
Pearson Addison Wesley,
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage