Next, to solve for y we apply the inverse Laplace transform - to each term of £{y}. Doing so gives the following result. We then use linearity to rewrite the terms on the right side of the equation. 1 18 1 x{y} = 3/6 (²) - 38 (5²1) + 3230 (5²6) - s 35 y(t) = y(t) = -1, = 1 18 1 -{()}. ( ² )} - 2 - ¹({ ¹8 ( ²₁ )} 36 35 1 - 2 - 1 { 1 } - 18 % - L- 36 35 Applying these gives the following result. 1 18 36 μ(1). u(t) 35 - Transform 11: If L{f(t)} = F(s) = == e². s-1 403 -6t ∙e 504 We now recall the following Laplace transforms from Appendix C. Transform 1: If £{f(t)} = F(s) ==—₁ , then f(t) = 1. S + 1 s-a "" + 823 61 360 823 360 403 1 e-1). + £¯ L X 504 L then f(t)= eat s +6 823 360 s- 1 (6 +-6)} - 2 - 1 504 ( 5 + 6) 1 11 ¹5+6] 11 S-6 403 504 L

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Applying the Inverse Laplace Transform

To solve for \( y \), we apply the inverse Laplace transform \( \mathcal{L}^{-1} \) to each term of \( \mathcal{L}\{y\} \). Doing so gives the following result. We then use linearity to rewrite the terms on the right side of the equation.

\[
\mathcal{L}\{y\} = \frac{1}{36} \left( \frac{1}{s} \right) - \frac{18}{35} \left( \frac{1}{s-1} \right) + \frac{823}{360} \left( \frac{1}{s-6} \right) - \frac{403}{504} \left( \frac{1}{s+6} \right)
\]

\[
y(t) = \mathcal{L}^{-1} \left\{ \frac{1}{36} \left( \frac{1}{s} \right) - \mathcal{L}^{-1} \left\{ \frac{18}{35} \left( \frac{1}{s-1} \right) + \mathcal{L}^{-1} \left\{ \frac{823}{360} \left( \frac{1}{s-6} \right) - \mathcal{L}^{-1} \left\{ \frac{403}{504} \left( \frac{1}{s+6} \right) \right\} \right\} \right\}
\]

Breaking it down using linearity:

\[
= \frac{1}{36} \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\} - \frac{18}{35} \mathcal{L}^{-1} \left\{ \frac{1}{s-1} \right\} + \frac{823}{360} \mathcal{L}^{-1} \left\{ \frac{1}{s-6} \right\} - \frac{403}{504} \mathcal{L}^{-1} \left\{ \frac{1}{s+6} \right\}
\]

### Laplace Transform Properties

We now recall the following Laplace transforms
Transcribed Image Text:### Applying the Inverse Laplace Transform To solve for \( y \), we apply the inverse Laplace transform \( \mathcal{L}^{-1} \) to each term of \( \mathcal{L}\{y\} \). Doing so gives the following result. We then use linearity to rewrite the terms on the right side of the equation. \[ \mathcal{L}\{y\} = \frac{1}{36} \left( \frac{1}{s} \right) - \frac{18}{35} \left( \frac{1}{s-1} \right) + \frac{823}{360} \left( \frac{1}{s-6} \right) - \frac{403}{504} \left( \frac{1}{s+6} \right) \] \[ y(t) = \mathcal{L}^{-1} \left\{ \frac{1}{36} \left( \frac{1}{s} \right) - \mathcal{L}^{-1} \left\{ \frac{18}{35} \left( \frac{1}{s-1} \right) + \mathcal{L}^{-1} \left\{ \frac{823}{360} \left( \frac{1}{s-6} \right) - \mathcal{L}^{-1} \left\{ \frac{403}{504} \left( \frac{1}{s+6} \right) \right\} \right\} \right\} \] Breaking it down using linearity: \[ = \frac{1}{36} \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\} - \frac{18}{35} \mathcal{L}^{-1} \left\{ \frac{1}{s-1} \right\} + \frac{823}{360} \mathcal{L}^{-1} \left\{ \frac{1}{s-6} \right\} - \frac{403}{504} \mathcal{L}^{-1} \left\{ \frac{1}{s+6} \right\} \] ### Laplace Transform Properties We now recall the following Laplace transforms
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,