Next, to solve for y we apply the inverse Laplace transform - to each term of £{y}. Doing so gives the following result. We then use linearity to rewrite the terms on the right side of the equation. 1 18 1 x{y} = 3/6 (²) - 38 (5²1) + 3230 (5²6) - s 35 y(t) = y(t) = -1, = 1 18 1 -{()}. ( ² )} - 2 - ¹({ ¹8 ( ²₁ )} 36 35 1 - 2 - 1 { 1 } - 18 % - L- 36 35 Applying these gives the following result. 1 18 36 μ(1). u(t) 35 - Transform 11: If L{f(t)} = F(s) = == e². s-1 403 -6t ∙e 504 We now recall the following Laplace transforms from Appendix C. Transform 1: If £{f(t)} = F(s) ==—₁ , then f(t) = 1. S + 1 s-a "" + 823 61 360 823 360 403 1 e-1). + £¯ L X 504 L then f(t)= eat s +6 823 360 s- 1 (6 +-6)} - 2 - 1 504 ( 5 + 6) 1 11 ¹5+6] 11 S-6 403 504 L
Next, to solve for y we apply the inverse Laplace transform - to each term of £{y}. Doing so gives the following result. We then use linearity to rewrite the terms on the right side of the equation. 1 18 1 x{y} = 3/6 (²) - 38 (5²1) + 3230 (5²6) - s 35 y(t) = y(t) = -1, = 1 18 1 -{()}. ( ² )} - 2 - ¹({ ¹8 ( ²₁ )} 36 35 1 - 2 - 1 { 1 } - 18 % - L- 36 35 Applying these gives the following result. 1 18 36 μ(1). u(t) 35 - Transform 11: If L{f(t)} = F(s) = == e². s-1 403 -6t ∙e 504 We now recall the following Laplace transforms from Appendix C. Transform 1: If £{f(t)} = F(s) ==—₁ , then f(t) = 1. S + 1 s-a "" + 823 61 360 823 360 403 1 e-1). + £¯ L X 504 L then f(t)= eat s +6 823 360 s- 1 (6 +-6)} - 2 - 1 504 ( 5 + 6) 1 11 ¹5+6] 11 S-6 403 504 L
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,