Newton's Divided-Difference Formula To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n+1) distinct numbers X0, X₁,...,x, for the function f: INPUT numbers X0,X₁,...,xn; values f(xo), f(x₁),..., f(x) as Fo,0, F1,0,..., Fm,0- OUTPUT the numbers Fo,0, F1,1, ..., Fnn where i-1 Pn(x) = F0,0 + F₁(x-x₁). (Fij is flxo, X₁,.., X;].) i=1 j=0 Step 1 For i = 1, 2,...,n For j = 1,2,...,i Fij-1-Fi-1j-1 set Fij = X Xinh Step 2 OUTPUT (F0,0, F1,1,F); STOP. (Fij = f[Xi-j,...,x].)

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Make an actual code equivalent in MATLAB.  Include the table showing the parameter values for each interpolate. Include graphs.

Newton's Divided-Difference
Formula
To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n+1)
distinct numbers X0, X₁,...,x, for the function f:
INPUT numbers X0,X₁,...,xn; values f(xo), f(x₁),..., f(x) as Fo,0, F1,0,.., F,0-
OUTPUT the numbers Fo,0, F1,1, ..., Fnn where
i-1
Pn(x) =F0,0 +Fij(x-x₁). (Fij is flxo,X₁,..., X;].)
j=0
Step 1 For i = 1,2,...,n
For j = 1,2,...,i
set Fij
Fij-1-Fi-1j-1
X Xinh
Step 2 OUTPUT (F0,0, F1,1,F);
STOP.
i=1
=
(Fij = f[Xi-j,...,x;].)
Transcribed Image Text:Newton's Divided-Difference Formula To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n+1) distinct numbers X0, X₁,...,x, for the function f: INPUT numbers X0,X₁,...,xn; values f(xo), f(x₁),..., f(x) as Fo,0, F1,0,.., F,0- OUTPUT the numbers Fo,0, F1,1, ..., Fnn where i-1 Pn(x) =F0,0 +Fij(x-x₁). (Fij is flxo,X₁,..., X;].) j=0 Step 1 For i = 1,2,...,n For j = 1,2,...,i set Fij Fij-1-Fi-1j-1 X Xinh Step 2 OUTPUT (F0,0, F1,1,F); STOP. i=1 = (Fij = f[Xi-j,...,x;].)
Hermite Interpolation
To obtain the coefficients of the Hermite interpolating polynomial H(x) on the (n + 1)
distinct numbers xo,...,x for the function f:
INPUT numbers xo, X₁,...,x; values f(xo),..., f(x) and f'(xo),..., f'(x₂).
OUTPUT the numbers Q0.0, Q1,1... Q2n+1,2n+1 where
H(x) =
Q0,0 +₁,1(x-xo) + Q₂₂(x − xo)² + Q3,3(x − xo)²(x − x₁)
+Q4.4(x-xo)²(x − x₁)²+...
+Q2n+1,2n+1(x-xo)²(x − x₁)²(x − xn−1)²(x − xn).
Step 1 For i = 0, 1,...,n do Steps 2 and 3.
Step 2 Set Z2 = Xis
Z2i+1=X₁;
Q21,0 = f(x₁);
Q2i+1,0 = f(x₁);
Q2i+1,1 = f'(x₂).
Step 3 If i #0 then set
Q2,1 =
Step 4 For i = 2, 3,..., 2n + 1
Q21,0-2-1,0
Z2i-Z2-1
=
for j = 2, 3,..., i set Qi.j :
Qi.j-1-Qi-1.j-1
Zi-Zi-j
Step 5 OUTPUT (Q0.0, Q1,1,Q2n+1,2n+1);
STOP
Transcribed Image Text:Hermite Interpolation To obtain the coefficients of the Hermite interpolating polynomial H(x) on the (n + 1) distinct numbers xo,...,x for the function f: INPUT numbers xo, X₁,...,x; values f(xo),..., f(x) and f'(xo),..., f'(x₂). OUTPUT the numbers Q0.0, Q1,1... Q2n+1,2n+1 where H(x) = Q0,0 +₁,1(x-xo) + Q₂₂(x − xo)² + Q3,3(x − xo)²(x − x₁) +Q4.4(x-xo)²(x − x₁)²+... +Q2n+1,2n+1(x-xo)²(x − x₁)²(x − xn−1)²(x − xn). Step 1 For i = 0, 1,...,n do Steps 2 and 3. Step 2 Set Z2 = Xis Z2i+1=X₁; Q21,0 = f(x₁); Q2i+1,0 = f(x₁); Q2i+1,1 = f'(x₂). Step 3 If i #0 then set Q2,1 = Step 4 For i = 2, 3,..., 2n + 1 Q21,0-2-1,0 Z2i-Z2-1 = for j = 2, 3,..., i set Qi.j : Qi.j-1-Qi-1.j-1 Zi-Zi-j Step 5 OUTPUT (Q0.0, Q1,1,Q2n+1,2n+1); STOP
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Knowledge Booster
Time complexity
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education