Near the end of a marathon race, the first two runners are separated by a distance of 45.0 m. The front runner has a velocity of 3.50 m/s, and the second a velocity of 4.20 m/s. (a) What is the velocity of the second runner relative to the first? m/s faster than the front runner. (b) If the front runner is 250 m from the finish line, who will win the race, assuming they run at constant velocity? The second runner will win. The first runner will win. (c) What distance ahead will the winner be when she crosses the finish line? m
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
Near the end of a marathon race, the first two runners are separated by a distance of 45.0 m. The front runner has a velocity of 3.50 m/s, and the second a velocity of 4.20 m/s.
(a) What is the velocity of the second runner relative to the first?
m/s faster than the front runner.
(b) If the front runner is 250 m from the finish line, who will win the race, assuming they run at constant velocity?
(c) What distance ahead will the winner be when she crosses the finish line?
m
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images