ndergoes isothermal expansion to 5 L followed by adiabatic expansion to 7 L. The gas is then sothermally compressed to back to 4 L and adiabatically compressed back to 2 L. b. Complete the table below Q (kl) W (kJ) Δυ (kJ) AH (kJ) AS (J/K) Process 10 2 2 0 3 3 0 4 4 0 1 C. Calculate the maximum efficiency for this cycle.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

One mole of a monatomic ideal gas
the finished  graph is the graph from part a

State
P (atm)
V (L)
т (к)
1
216.87
2
3.6
216.87
2.05
173.09
4
3.59
4
173.09
11.42
2
275.4
357
Transcribed Image Text:State P (atm) V (L) т (к) 1 216.87 2 3.6 216.87 2.05 173.09 4 3.59 4 173.09 11.42 2 275.4 357
1. One mole of a monatomic ideal gas is held initially at a pressure of 6 atm and 3 L. The gas
undergoes isothermal expansion to 5 L followed by adiabatic expansion to 7 L. The gas is then
isothermally compressed to back to 4 L and adiabatically compressed back to 2 L.
b. Complete the table below
Process
Q (kJ)
w (kJ)
Δυ (kJ)
AH (kJ)
AS (J/K)
10 2
2 0 3
3 0 4
4 0 1
C.
Calculate the maximum efficiency for this cycle.
Transcribed Image Text:1. One mole of a monatomic ideal gas is held initially at a pressure of 6 atm and 3 L. The gas undergoes isothermal expansion to 5 L followed by adiabatic expansion to 7 L. The gas is then isothermally compressed to back to 4 L and adiabatically compressed back to 2 L. b. Complete the table below Process Q (kJ) w (kJ) Δυ (kJ) AH (kJ) AS (J/K) 10 2 2 0 3 3 0 4 4 0 1 C. Calculate the maximum efficiency for this cycle.
Expert Solution
Step 1

a)Step 1-2 isothermal expansionStep 2-3adiabatic expansionStep 3-4isothermal compressionStep 4-5adiabatic compression

 

The followimg relations can be used for tabulating the valuesIsothermal expansion/compression(isenthalpic process)Q=-WW=-nRT lnVfinalVinitialH=0U=0S=nR lnPinitialPfinalwhere n is number of moles of monoatomic ideal gasR is gas constant=8.314 J/K.molFor adiabatic expansion/compression(isentropic process)Q=0W=K(Vfinal1-γ-Vinitial1-γ)1-γwhere λ=CpCV1.66 for monoatomic gasesK=PVλH=0U=-WS=0

 

Step 2

Chemical Engineering homework question answer, step 2, image 1

 

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Units and Dimensions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The