+ n/b 8 78. k UI k1 53. 0.00952 0.00952952. . In ((k +1)k) (In k) In (k + 1) Telescoping series For the following telescoping series, find a atmate lim S to obtain the value of the series or state that the series 0 125=1.252 6L k 2 5.1283=5.12838383. . . pamula for the nth term of the sequence of partial sums {S. Then 59-1 3 81. I k +1 k+2 3 I 3 I 00 S0dae I 83. 5 : +2 I 20 (k +6) (k + 7) 85. E) 25k2+ 15k- 4 I * 1=} 87. Explain why or w k=3 (4k - 3)(4k 1) ments are true and 4k2 32k 63 3 E--Y 00 k + 1 61. In k . Ifa conver InJI k 1 I 00 k=1 (3k+ 1)(3k+ 4) 00 b. If a diverg k 1 0=1 00 c. If a conve d. If p diver (2k - 1)(2k + 1 where p is a positive integer I real number -k 00 (k+ p)(k + p 1) 00 I=X e. I where a is a positive integer 00 ә К» ak +1)(ak + a + 1)' f. If the series [=\ I Vk+3 bconver 00 T Vk1 k 1 g. Viewed as a 00 67. 00 9 +2k k25k + 4 9 takes on all =1 69. (tan(k 1) - tan k) (- w 00 88-89. Binary nun 00 k-1 base-10 or decimal k 1 numbers internally Evaluating an infinite series two ways Evaluate the series 0's and l's. For thi I 2k 2k+1 00 I+yC two ways form 0.b,b,b3 The base-10 repre a. Use a telescoping series argument. b. Use a geometric series argument with Theorem 10.8. 71. Evaluating infinite series an infinite series two ways Evaluate the series 88. Verify that th + Ms M TAU 456456456. sin 125=1.252525. 5.12838383. 4 Telescoping series For the following telescoping series, find a e lim S to obtain the value of the series or state that the series 53. 0.00952 0.00952952. In ((k 1)k 6 (In k) In (k + E8275 k 2 for the nth term of the sequence of partial sums S. Then o0 81. 20 hat I k + 1 I k +2 C0 00 I 83. 9 I ¥ k + 3 +2 57. I 0 85. (L(9) .) 25k215k 4 00 10 87. Explain why or (4k 3) (4k 1) ments are true a = 1 4k2+32k + 63 30* E-F! k + 1 61. In 00 00 a. If a con I k 1 k-1 ( 3k + 1)(3k + 4) 00 b. If a, div k 1 0=} 2 00 (2k-1)(2k 1) c. If a co E 7 where p is a positive integer d. If p di I CC real numb . (I + d+ y)(d + 00 [=} e. I where a is a positive integer #2 ak + 1)(ak + a + 1)' 1=\ f. If the seri 1 I Vk+ 1 00 C0 Vk+ 3 k 1 ( g. Viewed: O0 9 k2+5k + 4 99 K+2k takes on 3 = \ 00 69. (tan(k + 1) - tan k) 88-89. Binary k 1 base-10 or deci Evaluating an infinite series two ways Evaluate the series numbers interne 0's and l's. For I two ways. form 0.b,b,b3 The base-10 re 2 2k+1 . => 2 Use a telescoping series argument. b. Use a geometric series argument with Theorem 10.8. infinite series

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Topic Video
Question

Can you help me on #61

+
n/b
8
78.
k
UI
k1
53. 0.00952
0.00952952. .
In ((k +1)k)
(In k) In (k + 1)
Telescoping series For the following telescoping series, find a
atmate lim S to obtain the value of the series or state that the series
0
125=1.252
6L
k 2
5.1283=5.12838383. . .
pamula for the nth term of the sequence of partial sums {S. Then
59-1
3
81.
I
k +1 k+2
3
I
3
I
00
S0dae
I
83.
5
:
+2
I
20
(k +6) (k + 7)
85.
E)
25k2+ 15k- 4
I *
1=}
87. Explain why or w
k=3 (4k - 3)(4k 1)
ments are true and
4k2 32k 63
3
E--Y
00
k + 1
61. In
k
. Ifa conver
InJI
k 1
I
00
k=1
(3k+ 1)(3k+ 4)
00
b. If a diverg
k 1
0=1
00
c. If a conve
d. If p diver
(2k - 1)(2k + 1
where p is a positive integer
I
real number
-k
00
(k+ p)(k + p 1)
00
I=X
e.
I
where a is a positive integer
00
ә
К»
ak +1)(ak + a + 1)'
f. If the series
[=\
I
Vk+3
bconver
00
T
Vk1
k 1
g. Viewed as a
00
67.
00
9
+2k
k25k + 4
9
takes on all
=1
69. (tan(k 1) - tan k)
(- w
00
88-89. Binary nun
00
k-1
base-10 or decimal
k 1
numbers internally
Evaluating an infinite series two ways Evaluate the series
0's and l's. For thi
I
2k 2k+1
00
I+yC
two ways
form 0.b,b,b3
The base-10 repre
a. Use a telescoping series argument.
b. Use a geometric series argument with Theorem 10.8.
71. Evaluating
infinite series
an infinite series two ways Evaluate the series
88. Verify that th
Transcribed Image Text:+ n/b 8 78. k UI k1 53. 0.00952 0.00952952. . In ((k +1)k) (In k) In (k + 1) Telescoping series For the following telescoping series, find a atmate lim S to obtain the value of the series or state that the series 0 125=1.252 6L k 2 5.1283=5.12838383. . . pamula for the nth term of the sequence of partial sums {S. Then 59-1 3 81. I k +1 k+2 3 I 3 I 00 S0dae I 83. 5 : +2 I 20 (k +6) (k + 7) 85. E) 25k2+ 15k- 4 I * 1=} 87. Explain why or w k=3 (4k - 3)(4k 1) ments are true and 4k2 32k 63 3 E--Y 00 k + 1 61. In k . Ifa conver InJI k 1 I 00 k=1 (3k+ 1)(3k+ 4) 00 b. If a diverg k 1 0=1 00 c. If a conve d. If p diver (2k - 1)(2k + 1 where p is a positive integer I real number -k 00 (k+ p)(k + p 1) 00 I=X e. I where a is a positive integer 00 ә К» ak +1)(ak + a + 1)' f. If the series [=\ I Vk+3 bconver 00 T Vk1 k 1 g. Viewed as a 00 67. 00 9 +2k k25k + 4 9 takes on all =1 69. (tan(k 1) - tan k) (- w 00 88-89. Binary nun 00 k-1 base-10 or decimal k 1 numbers internally Evaluating an infinite series two ways Evaluate the series 0's and l's. For thi I 2k 2k+1 00 I+yC two ways form 0.b,b,b3 The base-10 repre a. Use a telescoping series argument. b. Use a geometric series argument with Theorem 10.8. 71. Evaluating infinite series an infinite series two ways Evaluate the series 88. Verify that th
+
Ms M
TAU
456456456.
sin
125=1.252525.
5.12838383.
4 Telescoping series For the following telescoping series, find a
e lim S to obtain the value of the series or state that the series
53. 0.00952
0.00952952.
In ((k 1)k
6
(In k) In (k +
E8275
k 2
for the nth term of the sequence of partial sums S. Then
o0
81. 20
hat
I
k + 1
I
k +2
C0
00
I
83.
9
I ¥
k + 3
+2
57.
I
0
85.
(L(9)
.)
25k215k 4
00
10
87. Explain why or
(4k 3) (4k 1)
ments are true a
= 1
4k2+32k + 63
30*
E-F!
k + 1
61. In
00
00
a. If a con
I
k 1
k-1
( 3k + 1)(3k + 4)
00
b. If a, div
k 1
0=}
2
00
(2k-1)(2k 1)
c. If a co
E 7
where p is a positive integer
d. If p di
I
CC
real numb
. (I + d+ y)(d +
00
[=}
e.
I
where a is a positive integer
#2 ak + 1)(ak + a + 1)'
1=\
f. If the seri
1
I
Vk+ 1
00
C0
Vk+ 3
k 1
(
g. Viewed:
O0
9
k2+5k + 4
99
K+2k
takes on
3
= \
00
69. (tan(k + 1) - tan k)
88-89. Binary
k 1
base-10 or deci
Evaluating an infinite series two ways Evaluate the series
numbers interne
0's and l's. For
I
two ways.
form 0.b,b,b3
The base-10 re
2 2k+1
.
=>
2 Use a telescoping series argument.
b. Use a geometric series argument with Theorem 10.8.
infinite series
Transcribed Image Text:+ Ms M TAU 456456456. sin 125=1.252525. 5.12838383. 4 Telescoping series For the following telescoping series, find a e lim S to obtain the value of the series or state that the series 53. 0.00952 0.00952952. In ((k 1)k 6 (In k) In (k + E8275 k 2 for the nth term of the sequence of partial sums S. Then o0 81. 20 hat I k + 1 I k +2 C0 00 I 83. 9 I ¥ k + 3 +2 57. I 0 85. (L(9) .) 25k215k 4 00 10 87. Explain why or (4k 3) (4k 1) ments are true a = 1 4k2+32k + 63 30* E-F! k + 1 61. In 00 00 a. If a con I k 1 k-1 ( 3k + 1)(3k + 4) 00 b. If a, div k 1 0=} 2 00 (2k-1)(2k 1) c. If a co E 7 where p is a positive integer d. If p di I CC real numb . (I + d+ y)(d + 00 [=} e. I where a is a positive integer #2 ak + 1)(ak + a + 1)' 1=\ f. If the seri 1 I Vk+ 1 00 C0 Vk+ 3 k 1 ( g. Viewed: O0 9 k2+5k + 4 99 K+2k takes on 3 = \ 00 69. (tan(k + 1) - tan k) 88-89. Binary k 1 base-10 or deci Evaluating an infinite series two ways Evaluate the series numbers interne 0's and l's. For I two ways. form 0.b,b,b3 The base-10 re 2 2k+1 . => 2 Use a telescoping series argument. b. Use a geometric series argument with Theorem 10.8. infinite series
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 3 images

Blurred answer
Knowledge Booster
Data Collection, Sampling Methods, and Bias
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning