na population with a proportion equal to 0.64. Complete parts a) through c) below. e cumulative standardized normal distribution table. ne cumulative standardized normal distribution table. f observing 83 or fewer successes. esses) = .3015 s as needed.) of observing 88 or fewer successes. cesses) = s as needed.) of observing 79 or more successes. cesses) = s as needed.)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
ITS NOT A GRADED QUESTION!
amulative standardized normal distribution table (page 2)
- X
tive standardized normal distribution table (page 1)
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.0
05000
0.5040
0.5080
0.09
0.5120
0.5160
05199
05239
0.5279
FIRST DIGIT OF Z
0.1
05398
0.5438
0.5478
0.5557
05319
0.5359
SECOND DIGIT OF z
0.5517
0.5596
05636
0.5675
0.2
05793
05714
0.5753
0.00
0.01
0.02
0.03
0.5832
0.5871
0.5910
0.5948
005
0.06
0.07
0.6026
0.6406
0.6772
0.5987
0.6064
0.6103
0.6141
-3.0
0.0013
0.0013
0.00
0.3
0.6179
0.6217
0.6255
0.0013
0.0012
0.0012
0.0011
0.0011
0.6293
0.6331
0.6368
0.00 1
0.0010
0.0010
0.4
0.6443
0.6480
0.6517
-2.9
0.0019
0.0018
0.0018
0.0017
0.0016
0.6554
0.6591
0.6628
0.6664
0.6700
0.0016
0.0015
0.0015
0.0014
0.0014
0.6736
0.6808
0.6844
0.6879
-2.8
0.0026
0.0025
0.0024
0.0023
0.6915
0.6950
0.6985
0.7019
0.0022
0.0021
0.0021
0.0020
0.0019
0.7054
0.7088
0.7123
0.7157
0.7190
0.7224
-2.7
0.0035
0.0034
0.0033
0.0032
0.7257
0.7291
0.0031
0.0030
0.0029
0.0028
0.0027
0.7324
0.7357
0.7389
0.7422
0.7454
0.7486
0.7517
0.7549
-2.6
0.0047
0.0045
0.0044
0.0043
0.0041
0.0040
0.0039
0.0038
0.0037
0.0036
0.7580
0.7611
0.7642
0.7673
0.7704
0.7734
0.7764
0.7794
-25
0.0062
0.0060
0.0059
0.7823
0.7852
0.0067
0.0055
0.0054
0.0052
0.0051
0.0049
0.0048
0.7881
0.7910
0.7939
0.7020
0.7967
0.7905
0.8023
0.8051
0.8078
08106
0.8133
-24
0.0082
0.0080
0.0078
0.0075
0.0073
0.0071
0.0069
0.0068
0.0066
0.0064
0.9
08159
0.8186
0.8212
0.8238
08264
08340
0.8577
08365
0.8599
0.8289
08315
0.8389
-2.3
0.0107
0.0104
0.0102
0.0099
0.0006
0.0094
0.0091
0.0089
0.0087
0.0084
1.0
0.8413
0.8438
0.8461
0.8485
08508
0.8531
0.8554
0.8621
-22
0.0139
0.0136
0.0132
0.0129
0.0125
0.0122
0.0119
0.0116
0.01 13
0.0110
1.1
08643
0.8686
0.8888
0.9066
0.8665
0.8708
0.8729
0.8749
08770
08790
0.8810
0.8830
-2.1
0.0179
0.0174
0.01 70
0.0166
0.0162
0.0158
0.0154
0.0150
0.0146
0.0143
1.2
08840
0.8869
0.8907
0.8925
0.8944
0.8962
0.8980
0.8997
0.9015
-2.0
0.0228
0.0222
0.0217
0.0212
0.0207
0.0202
0.0197
0.0192
0.0188
0.0183
0.9032
0.9049
0.9099
-1.9
0.0287
0.0281
0.0274
1.3
0.9082
0.9115
0.9131
0.9147
0.9162
0.9177
0.0268
0.0262
0.0256
0.0244
0.0239
0.0233
14
0.9192
0.9207
0.9222
0.9236
0.9251
0.9265
0.9279
0.9319
-18
0.0359
0.0351
0.0344
0.0336
0.0320
0.9292
0.9306
0.0314
0.0307
0.0301
0.0294
1.5
0.9332
0.9345
0.9382
-1.7
0.0446
0.0436
0.0427
0.0418
00401
0.0392
0.9357
0.9370
0.9394
0.9406
0.9418
0.9429
0.9441
0.0409
0.0384
0.0367
1.6
0.9452
0.9463
0.9474
0.9484
0.9405
0.9505
0.9515
0.9529
0.9535
0.9545
-16
0.0548
0.0537
0.0526
0.0516
0.0505
0.0495
0.048S
0.0475
0.0465
0.0455
1.7
0.9554
0.9564
0.9573
0.9582
0.9591
0.9599
0.9608
0.9616
0.9625
0.9633
-15
0.0668
0.0655
0.0643
0.0630
0.0618
0.0606
0.059
00582
0.0571
0.0559
-14
0.0808
0.0793
0.0778
0.0764
0.0735
0.0721
0.0708
0.0694
0.0681
1.8
0.9641
0.9649
0.9656
0.9664
0.9671
0.9678
0.9686
0.9693
0.9699
0.9706
0.0068
0.1151
-13
0.0951
0.0934
0.0918
0.0001
0.0885
0.0869
0.0853
.0838
0.0823
1.9
0.9713
0.9719
0.9726
0.9732
0.9738
0.9744
0.9750
0.9756
0.9761
0.9767
-12
0.1131
0.1112
0.1093
0.1075
0.1056
0.1038
0.1020
0.1003
0.0985
20
0.9772
0.9778
0.9783
0.9788
0.9793
0.9798
0.9803
0.9808
0.9812
0,9817
-11
0.1357
0.1335
0.1314
0.1292
0.1271
0.1251
0.1230
0.1210
0.1190
0.1170
2.1
0.9821
0.9826
0.9830
0.9834
0.9838
0.9842
0.9846
0.9850
0.9854
0.9857
-1.0
0.1587
0.1562
0.1539
0.1515
0.1492
0.1446
0.1423
0.1401
0.1379
22
0.9861
0.9864
0.9868
0.9871
0.9875
0.9878
0.9881
0.9884
0.9887
0.9890
Transcribed Image Text:amulative standardized normal distribution table (page 2) - X tive standardized normal distribution table (page 1) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.0 05000 0.5040 0.5080 0.09 0.5120 0.5160 05199 05239 0.5279 FIRST DIGIT OF Z 0.1 05398 0.5438 0.5478 0.5557 05319 0.5359 SECOND DIGIT OF z 0.5517 0.5596 05636 0.5675 0.2 05793 05714 0.5753 0.00 0.01 0.02 0.03 0.5832 0.5871 0.5910 0.5948 005 0.06 0.07 0.6026 0.6406 0.6772 0.5987 0.6064 0.6103 0.6141 -3.0 0.0013 0.0013 0.00 0.3 0.6179 0.6217 0.6255 0.0013 0.0012 0.0012 0.0011 0.0011 0.6293 0.6331 0.6368 0.00 1 0.0010 0.0010 0.4 0.6443 0.6480 0.6517 -2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.6554 0.6591 0.6628 0.6664 0.6700 0.0016 0.0015 0.0015 0.0014 0.0014 0.6736 0.6808 0.6844 0.6879 -2.8 0.0026 0.0025 0.0024 0.0023 0.6915 0.6950 0.6985 0.7019 0.0022 0.0021 0.0021 0.0020 0.0019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 -2.7 0.0035 0.0034 0.0033 0.0032 0.7257 0.7291 0.0031 0.0030 0.0029 0.0028 0.0027 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 -2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 -25 0.0062 0.0060 0.0059 0.7823 0.7852 0.0067 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 0.7881 0.7910 0.7939 0.7020 0.7967 0.7905 0.8023 0.8051 0.8078 08106 0.8133 -24 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 0.9 08159 0.8186 0.8212 0.8238 08264 08340 0.8577 08365 0.8599 0.8289 08315 0.8389 -2.3 0.0107 0.0104 0.0102 0.0099 0.0006 0.0094 0.0091 0.0089 0.0087 0.0084 1.0 0.8413 0.8438 0.8461 0.8485 08508 0.8531 0.8554 0.8621 -22 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.01 13 0.0110 1.1 08643 0.8686 0.8888 0.9066 0.8665 0.8708 0.8729 0.8749 08770 08790 0.8810 0.8830 -2.1 0.0179 0.0174 0.01 70 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 1.2 08840 0.8869 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 0.9032 0.9049 0.9099 -1.9 0.0287 0.0281 0.0274 1.3 0.9082 0.9115 0.9131 0.9147 0.9162 0.9177 0.0268 0.0262 0.0256 0.0244 0.0239 0.0233 14 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9319 -18 0.0359 0.0351 0.0344 0.0336 0.0320 0.9292 0.9306 0.0314 0.0307 0.0301 0.0294 1.5 0.9332 0.9345 0.9382 -1.7 0.0446 0.0436 0.0427 0.0418 00401 0.0392 0.9357 0.9370 0.9394 0.9406 0.9418 0.9429 0.9441 0.0409 0.0384 0.0367 1.6 0.9452 0.9463 0.9474 0.9484 0.9405 0.9505 0.9515 0.9529 0.9535 0.9545 -16 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.048S 0.0475 0.0465 0.0455 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 -15 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.059 00582 0.0571 0.0559 -14 0.0808 0.0793 0.0778 0.0764 0.0735 0.0721 0.0708 0.0694 0.0681 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 0.0068 0.1151 -13 0.0951 0.0934 0.0918 0.0001 0.0885 0.0869 0.0853 .0838 0.0823 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 -12 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 20 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0,9817 -11 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 -1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1446 0.1423 0.1401 0.1379 22 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
A sample of 135 is drawn from a population with a proportion equal to 0.64. Complete parts a) through c) below.
Click here to view page 1 of the cumulative standardized normal distribution table.
Click here to view page 2 of the cumulative standardized normal distribution table.
a) Determine the probability of observing 83 or fewer successes.
P(Observing 83 or fewer successes)% = .3015
(Round to four decimal places as needed.)
b) Determine the probability of observing 88 or fewer successes.
P(Observing 88 or fewer successes)% =
(Round to four decimal places as needed.)
c) Determine the probability of observing 79 or more successes.
P(Observing 79 or more successes) =
(Round to four decimal places as needed.)
Transcribed Image Text:A sample of 135 is drawn from a population with a proportion equal to 0.64. Complete parts a) through c) below. Click here to view page 1 of the cumulative standardized normal distribution table. Click here to view page 2 of the cumulative standardized normal distribution table. a) Determine the probability of observing 83 or fewer successes. P(Observing 83 or fewer successes)% = .3015 (Round to four decimal places as needed.) b) Determine the probability of observing 88 or fewer successes. P(Observing 88 or fewer successes)% = (Round to four decimal places as needed.) c) Determine the probability of observing 79 or more successes. P(Observing 79 or more successes) = (Round to four decimal places as needed.)
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman