n2 - 2 is

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
**Problem Statement:**

Use contradiction to prove that there is no integer \( n \) such that \( n^2 - 2 \) is divisible by 4.

**Solution Outline:**

1. **Assumption for Contradiction:**
   - Assume that there exists an integer \( n \) such that \( n^2 - 2 \equiv 0 \pmod{4} \). This means \( n^2 \equiv 2 \pmod{4} \).

2. **Analyzing Possible Values of \( n \):**
   - Consider all possible integer residues of \( n \) modulo 4: \( n \equiv 0, 1, 2, 3 \pmod{4} \).

3. **Case Analysis:**
   - **Case 1:** \( n \equiv 0 \pmod{4} \)
     - Then \( n^2 \equiv 0^2 \equiv 0 \pmod{4} \).
   - **Case 2:** \( n \equiv 1 \pmod{4} \)
     - Then \( n^2 \equiv 1^2 \equiv 1 \pmod{4} \).
   - **Case 3:** \( n \equiv 2 \pmod{4} \)
     - Then \( n^2 \equiv 2^2 \equiv 4 \equiv 0 \pmod{4} \).
   - **Case 4:** \( n \equiv 3 \pmod{4} \)
     - Then \( n^2 \equiv 3^2 \equiv 9 \equiv 1 \pmod{4} \).

4. **Conclusion:**
   - None of the possible values for \( n \) satisfy \( n^2 \equiv 2 \pmod{4} \).
   - Hence, the assumption that such an integer \( n \) exists is false.

This completes the proof by contradiction that there is no integer \( n \) such that \( n^2 - 2 \) is divisible by 4.
Transcribed Image Text:**Problem Statement:** Use contradiction to prove that there is no integer \( n \) such that \( n^2 - 2 \) is divisible by 4. **Solution Outline:** 1. **Assumption for Contradiction:** - Assume that there exists an integer \( n \) such that \( n^2 - 2 \equiv 0 \pmod{4} \). This means \( n^2 \equiv 2 \pmod{4} \). 2. **Analyzing Possible Values of \( n \):** - Consider all possible integer residues of \( n \) modulo 4: \( n \equiv 0, 1, 2, 3 \pmod{4} \). 3. **Case Analysis:** - **Case 1:** \( n \equiv 0 \pmod{4} \) - Then \( n^2 \equiv 0^2 \equiv 0 \pmod{4} \). - **Case 2:** \( n \equiv 1 \pmod{4} \) - Then \( n^2 \equiv 1^2 \equiv 1 \pmod{4} \). - **Case 3:** \( n \equiv 2 \pmod{4} \) - Then \( n^2 \equiv 2^2 \equiv 4 \equiv 0 \pmod{4} \). - **Case 4:** \( n \equiv 3 \pmod{4} \) - Then \( n^2 \equiv 3^2 \equiv 9 \equiv 1 \pmod{4} \). 4. **Conclusion:** - None of the possible values for \( n \) satisfy \( n^2 \equiv 2 \pmod{4} \). - Hence, the assumption that such an integer \( n \) exists is false. This completes the proof by contradiction that there is no integer \( n \) such that \( n^2 - 2 \) is divisible by 4.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman