n). 10. Prove that a560 = 1 (mod 561) for all (a, 561) = 1.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
100%
Can you do #10?
### Number Theory Problem Set

1. **Question**: What is the smallest positive integer \( n \) such that \( \phi(n) = 12 \) and \( (n, 100) = 1 \)?

2. **Question**: Prove that \( m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{\operatorname{mn}} \) if \( (m,n) = 1 \).

3. **Question**: Show that if \( n = pq \), a product of distinct primes, then \( a^{\phi(n)+1} \equiv a \pmod{n} \) for all \( a \).

4. **Question**: Suppose that \( n = rs \) with \( r > 2 \), \( s > 2 \), and \( (r,s) = 1 \). Show that \( a^{\frac{\phi(n) + \phi(a)}{2}} \equiv 1 \pmod{n} \), that is, \( a^{\frac{\phi(n)}{2} + 1} \equiv 1 \pmod{n} \).

5. **Question**: Suppose \( n \) is the product of two odd primes, \( p \) and \( q \). Let
   \[
   \lambda(n) = \frac{(p-1)(q-1)}{(p-1, q-1)}.
   \]
   Show that \( a^{\lambda(n)} \equiv 1 \pmod{n} \) for all integers \( a \), satisfying \( (a, n) = 1 \).

6. **Question**: Use a computer to find the composite numbers \( n \leq 2000 \) such that \( 2^n \equiv 2 \pmod{n} \). Repeat the exercise to find composite \( n \) such that \( 3^n \equiv 3 \pmod{n} \).

7. **Question**: Prove that \( a^{560} \equiv 1 \pmod{561} \) for all \( (a, 561) = 1 \).

8. **Question**: Suppose \( a^x \equiv 1 \pmod{m} \) and \( a^
Transcribed Image Text:### Number Theory Problem Set 1. **Question**: What is the smallest positive integer \( n \) such that \( \phi(n) = 12 \) and \( (n, 100) = 1 \)? 2. **Question**: Prove that \( m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{\operatorname{mn}} \) if \( (m,n) = 1 \). 3. **Question**: Show that if \( n = pq \), a product of distinct primes, then \( a^{\phi(n)+1} \equiv a \pmod{n} \) for all \( a \). 4. **Question**: Suppose that \( n = rs \) with \( r > 2 \), \( s > 2 \), and \( (r,s) = 1 \). Show that \( a^{\frac{\phi(n) + \phi(a)}{2}} \equiv 1 \pmod{n} \), that is, \( a^{\frac{\phi(n)}{2} + 1} \equiv 1 \pmod{n} \). 5. **Question**: Suppose \( n \) is the product of two odd primes, \( p \) and \( q \). Let \[ \lambda(n) = \frac{(p-1)(q-1)}{(p-1, q-1)}. \] Show that \( a^{\lambda(n)} \equiv 1 \pmod{n} \) for all integers \( a \), satisfying \( (a, n) = 1 \). 6. **Question**: Use a computer to find the composite numbers \( n \leq 2000 \) such that \( 2^n \equiv 2 \pmod{n} \). Repeat the exercise to find composite \( n \) such that \( 3^n \equiv 3 \pmod{n} \). 7. **Question**: Prove that \( a^{560} \equiv 1 \pmod{561} \) for all \( (a, 561) = 1 \). 8. **Question**: Suppose \( a^x \equiv 1 \pmod{m} \) and \( a^
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,