N M Define the linear transformati T:R³ R3 So that somation. XI m -n₂+ 242 X2 → -2₁ - 2n2+ 3 X3 2n1 + 12 + 23 @ Find the standard patrix of I One to one ? Explain. is T is T Onto? Explain. if there is any find a Vector V such that T (V) - V Who V = 2 -1 3

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
---

### Linear Transformations in R³

**Problem 1: Define the Linear Transformation**

Given linear transformation \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) is defined such that:

\[ T \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 - x_2 + x_3 \\ 2x_1 + 2x_2 + x_3 \\ x_1 + 2x_2 + 3x_3 \end{bmatrix} \]

---

**Problem 2: Standard Matrix of T**

(a) **Find the Standard Matrix of T**

To define the standard matrix \( A \) for the transformation \( T \), we express the transformation in terms of a matrix multiplication \( T(\mathbf{x}) = A \mathbf{x} \).

The transformation is defined as:

\[ T \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 - x_2 + x_3 \\ 2x_1 + 2x_2 + x_3 \\ x_1 + 2x_2 + 3x_3 \end{bmatrix} \]

This can be written as:

\[ T(\mathbf{x}) = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \]

Therefore, the standard matrix \( A \) is:

\[ A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \]

(b) **Is T one-to-one? Explain.**

A linear transformation \( T \) is one-to-one if and only if the matrix \( A \) has full column rank (which means that the columns of \( A \) are linearly independent).
To check if \( A \) is one-to-one, we need to determine if \( \text{det
Transcribed Image Text:--- ### Linear Transformations in R³ **Problem 1: Define the Linear Transformation** Given linear transformation \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) is defined such that: \[ T \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 - x_2 + x_3 \\ 2x_1 + 2x_2 + x_3 \\ x_1 + 2x_2 + 3x_3 \end{bmatrix} \] --- **Problem 2: Standard Matrix of T** (a) **Find the Standard Matrix of T** To define the standard matrix \( A \) for the transformation \( T \), we express the transformation in terms of a matrix multiplication \( T(\mathbf{x}) = A \mathbf{x} \). The transformation is defined as: \[ T \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 - x_2 + x_3 \\ 2x_1 + 2x_2 + x_3 \\ x_1 + 2x_2 + 3x_3 \end{bmatrix} \] This can be written as: \[ T(\mathbf{x}) = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \] Therefore, the standard matrix \( A \) is: \[ A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \] (b) **Is T one-to-one? Explain.** A linear transformation \( T \) is one-to-one if and only if the matrix \( A \) has full column rank (which means that the columns of \( A \) are linearly independent). To check if \( A \) is one-to-one, we need to determine if \( \text{det
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education