N dz (6) 2e 2 (cost+isint) = 3D2005€+22sint Y'(t)%3D2ieit Zeit

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Hi. What am I doing wrong here? Integrating over that curve using the parameteization.

### Complex Integration Example

#### Problem:

Evaluate the contour integral:

\[ \int_C \frac{z}{z+1} \, dz \]

for a given contour \( C(t) \) where \( C(t) = 2e^{it} \) and \( t \in [0, \pi] \).

#### Solution:

1. **Given Contour:**

   \[ C(t) = 2e^{it}, \quad t \in [0, \pi] \]

2. **Graphical Representation:**
   
   The given contour describes a semicircle in the complex plane with a radius of 2 and centered at the origin, starting from \(2\) on the real axis and ending at \(-2\) on the real axis.

   \[
   \begin{array}{c}
     \text{Diagram:}
     \begin{array}{|c|c|}
       \hline
       \text{0} & 1 \\
       \hline
     \end{array}
   \end{array}
   \quad
   \begin{array}{|c|}
     \hline
     \frac{2e^{it}}{2e^{it}+1} \\
     \hline
   \end{array}
   \]

3. **Parametric Representation:**

   \[ C(t) = \gamma(t) = 2e^{it} = 2(\cos t + i \sin t) = 2 \cos t + 2i \sin t \]

4. **Derivative of the Parametric Equation:**

   \[ \gamma'(t) = 2i e^{it} \]

5. **Substitute \( f(z) = \frac{z}{z+1} \) into the integral:**

   \[
   f(\gamma(t)) = \frac{2e^{it}}{2e^{it} + 1}
   \]

6. **Rewriting the integral:**

   \[
   \int_0^\pi \frac{2e^{it}}{2e^{it}+1} (2ie^{it}) \, dt
   \]

7. **Simplify the integral:**

   \[
   = \int_0^\pi \frac{4ie^{2it}}{2e^{it} + 1}
Transcribed Image Text:### Complex Integration Example #### Problem: Evaluate the contour integral: \[ \int_C \frac{z}{z+1} \, dz \] for a given contour \( C(t) \) where \( C(t) = 2e^{it} \) and \( t \in [0, \pi] \). #### Solution: 1. **Given Contour:** \[ C(t) = 2e^{it}, \quad t \in [0, \pi] \] 2. **Graphical Representation:** The given contour describes a semicircle in the complex plane with a radius of 2 and centered at the origin, starting from \(2\) on the real axis and ending at \(-2\) on the real axis. \[ \begin{array}{c} \text{Diagram:} \begin{array}{|c|c|} \hline \text{0} & 1 \\ \hline \end{array} \end{array} \quad \begin{array}{|c|} \hline \frac{2e^{it}}{2e^{it}+1} \\ \hline \end{array} \] 3. **Parametric Representation:** \[ C(t) = \gamma(t) = 2e^{it} = 2(\cos t + i \sin t) = 2 \cos t + 2i \sin t \] 4. **Derivative of the Parametric Equation:** \[ \gamma'(t) = 2i e^{it} \] 5. **Substitute \( f(z) = \frac{z}{z+1} \) into the integral:** \[ f(\gamma(t)) = \frac{2e^{it}}{2e^{it} + 1} \] 6. **Rewriting the integral:** \[ \int_0^\pi \frac{2e^{it}}{2e^{it}+1} (2ie^{it}) \, dt \] 7. **Simplify the integral:** \[ = \int_0^\pi \frac{4ie^{2it}}{2e^{it} + 1}
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,