n - 4 Sn The nth partial sum of the series 2n = 1 an is given by n + 5. Select the correct rule for a,or the actual nth term. Hint: an = Sn- Sn - 1 a 9. An (n + 5)(n + 3) b an (n + 5)(n + 4) -5 An (n + 3)(n + 2) 2n? +9 (n + 5)(n + 4) || || || ||

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The \( n^{th} \) partial sum of the series \( \sum_{n=1}^{\infty} a_n \) is given by \( S_n = \frac{n-4}{n+5} \).

Select the correct rule for \( a_n \), or the actual \( n^{th} \) term.

**Hint**: \( a_n = S_n - S_{n-1} \)

- **Option a:**
  \[
  a_n = \frac{9}{(n+5)(n+3)}
  \]

- **Option b:**
  \[
  a_n = \frac{9}{(n+5)(n+4)}
  \]

- **Option c:**
  \[
  a_n = \frac{-5}{(n+3)(n+2)}
  \]

- **Option d:**
  \[
  a_n = \frac{2n^2 + 9}{(n+5)(n+4)}
  \]
Transcribed Image Text:The \( n^{th} \) partial sum of the series \( \sum_{n=1}^{\infty} a_n \) is given by \( S_n = \frac{n-4}{n+5} \). Select the correct rule for \( a_n \), or the actual \( n^{th} \) term. **Hint**: \( a_n = S_n - S_{n-1} \) - **Option a:** \[ a_n = \frac{9}{(n+5)(n+3)} \] - **Option b:** \[ a_n = \frac{9}{(n+5)(n+4)} \] - **Option c:** \[ a_n = \frac{-5}{(n+3)(n+2)} \] - **Option d:** \[ a_n = \frac{2n^2 + 9}{(n+5)(n+4)} \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,