icon
Related questions
Question

Consider the polar-coordinate stream function ψ = Br1/2
sin(1.2 θ), with B equal, for convenience, to 1.0 ft0.8/s.
(a) Plot the streamline ψ = 0 in the upper half plane.
(b) Plot the streamline ψ = 1.0 and interpret the fl ow
pattern. (c) Find the locus of points above ψ = 0 for which
the resultant velocity = 1.2 ft/s.

n= 2
Transcribed Image Text:n= 2
Expert Solution
Step 1

(a)

Write the streamline equation in polar coordinate.

Substitute 0 for .

The sin value of a quantity can be zero only when the quantity is equal to  and .

So,

And,

Step 2

This is the case of a potential flow around a  corner.

So, the plot the streamline  in the upper half plane as shown in the following figure:

Picture 1

Step 3

(b)

Consider the streamline at .

Upon rearranging the terms the equation assumes the following form:

Substitute  for B.

Apply logarithms with base e on both sides of the equation.

Step 4

Calculate the values of rx, and y for a range of the values of  as follows:

(degrees)

r

0

Not defined

Not defined

Not defined

10

3.702

3.6457

0.6428

20

2.1164

1.9887

0.7238

30

1.557

1.3484

0.7785

40

1.28069

0.98106

0.8232

50

1.127

0.72442

0.86333

60

1.0427

0.52135

0.903

70

1.004588

0.34356

0.944

80

1.004588

0.17445

0.9893

90

1.0427

0

1.0427

100

1.127

-0.1957

1.109

110

1.28069

-0.43802

1.20345

120

1.127

-0.7785

1.3484

130

2.1164

-1.3604

1.6212

140

3.702

-2.8358

2.37959

150

Not defined

Not defined

Not defined

steps

Step by step

Solved in 7 steps with 43 images

Blurred answer