n-2 (2p + h ( fi+8P+ fei+7h` fei+7P + fsi+sh ) (föi+39 + fei+2k ) ( foi+49 + fei+3k° fon+19 + fonk fon+29 + fon+1k] p+h n-2 (2p + h` p+h (fei+8P+ fei+7h` Soi+7P + foi+sh, Soi+39 + fessak ) |n+29 + Jon+1k + fon+19 + fôn+29 + fón+1k foi+49 + fei+3k` r (2p + h) ÏT ) (fei+49 + fei+3k\ ( foi+8P + fei+7h` foi+49 + fei+3k` (Joi+7P+ fei+sh ) \fei+39 + fei+zk ) [fon+29 + fon+1k] [ fon+39 + fon+2k] p+h i=0 16 Therefore n- rT foi-2p+ fei+1h fei+1p+ feih ) (oi+49 + fei+3k` I Iôn-2 foi+39 + fei+2k, i=0

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

Show me the steps of determine red and information is here step by step .it complete

n-2
[Son-3P+ fön-4h + fên-4P+ fón-5h
fön-3p + fén-gh
(Söi+aP + fei+3h\
Soi+69 + fei+sk
II
fei+3P+ fei+2h ) (foi+59 + fei+ak )
i=0
n-2
fei+4P + foi+3h (foir69 + fei+sk)
(fei+3p + f6i+2h ) föi+59 + fei+ak ) (fên-3p + fön-4h
fon-2P + fén-3h
= q
i=0
Therefore
Xôn-3 = kI( I6i+4P + fei+ah
foi+3P + fei+2h )
n-1
feiq + fei-1k
foi-19 + fei-2k,
i=0
Also, from Eq.(8), we see that
X6n-4X6n-5
I6n-2 = X6n-5 +
X6n-4 + xôn-7
n-2
(2p + h
+h) IIFoi+7p+ fsi+sh ) \ foi+39 + fei+2k ,
foi+sp+ fei+7h`
( foit49 + föi+3k`
i=0
n-1
n-2
Jei+39+J6i+2k
+i=0
n-1
i=0
n-2
Jei+5P+/ei+4h
S6i+19+Seik
i=0
n-2
(2р + h)
fei+7P+ f6i+6h) (föi+39 + fei+2k )
i=0
n-2
+
n-2
Jen+19+ Jen
Jeng+fen-1k
i=0
i=0
i=0
n-2
fei+8P + fei+7h\ ( fei+49 + fei+3k`
fei+7p + fei+oh)\ fei+34 + f6i+2k,
(2p + h \
)II
= r
p+h
i=0
n-2
(2p+h
pth
(Tei+7p+Sei+ah
i=0
fei+49+S6i+ak\
Jei+39+Se+zk)
+
n-1
n-2
fei-1p+ fei-2h
fei46p+ fei4sh
(Leng+fen-1k
h+P
Jen+19+fonk
f6i+sp+ fei+ah
| fsipt Sei-ih
i=0
i=0
15
- -(
п-2
föi+49 + fei+3k \
foi+sP + fei+7h\
( fei+7P + f6i+oh )\ fôi+39 + fei+2k)
2р +
p+h)I
I6n-2
i=0
T-2
(2p+h) T (fsitsp+fai47h
S6i+49+So143k
Joi+39+ Sei+2k)
h
i=0
+
fonq+fon-ik
( Jên+19+fenk)
h + p
n-2
(2р + h)
p+h
I6n-2
fei+7P + fei+6h
( Soi+39 + f6i+2k )
i=0
n-2
hr
feit49+Sei+3k
i=0
+
h
Jên +19+ fenk
n-2
2р +
föi+49 + fei+3k`
6n-2
= r
p+h
Sei+7P + fei+sh ) \ Foi+39 + fei+2k )
i=0
n-2
Joi+7p+fes+6h) (Tei+39+Sei+2k
i=0
fon +19+fank+Sanq+Son-1k
Sen+19+ fenk
n-2
( foi+8P + f6i+7h`
foi+7P + fei+ch )foi+39 + foi+2k,
2p + h
föi+49 + foi+3k\
=
P+h
i=0
n-2
2p+h
p+h
Joi+7p+fei+sh) Foi439+fei+2k
i=0
fen+29+føn+1k
fon+19+fenk
n-2
fei+49 + fei+3k`
Joi+7P + foi+oh ) (Foi-39 + fei+2k ) [* + fon+29 + fon+1k]
'2р + h)
fön+19 + fenk
p+h
i=0
(2p+ h T (foit8P+ fei+7h\ (fei+49 + fei+3k\ [fon+29 + fön+1k + fon+19+ fonk"
foi+7P + foi+6h) (foi+39 + foi+2k /
п-2
fon+29 + fön+1k
i=0
п-2
fei+4q + fei+3k\ [ fon+39 + f6n+2k]
föi+7P + fei+6h ) (fBi+39 + f6i+2k) [fön+29 + fén+1k
(2p + h)
AP+h
i=0
16
Therefore
( föi+2P + fei+1h`
fei+ip + fesh)(Gi+49 + foi+3k*
n-1
X6n-2 = r
foi+39 + f6i+2k
i=0
Also, other formulas can be proved similarly. Hence, the proof is completed.
Transcribed Image Text:n-2 [Son-3P+ fön-4h + fên-4P+ fón-5h fön-3p + fén-gh (Söi+aP + fei+3h\ Soi+69 + fei+sk II fei+3P+ fei+2h ) (foi+59 + fei+ak ) i=0 n-2 fei+4P + foi+3h (foir69 + fei+sk) (fei+3p + f6i+2h ) föi+59 + fei+ak ) (fên-3p + fön-4h fon-2P + fén-3h = q i=0 Therefore Xôn-3 = kI( I6i+4P + fei+ah foi+3P + fei+2h ) n-1 feiq + fei-1k foi-19 + fei-2k, i=0 Also, from Eq.(8), we see that X6n-4X6n-5 I6n-2 = X6n-5 + X6n-4 + xôn-7 n-2 (2p + h +h) IIFoi+7p+ fsi+sh ) \ foi+39 + fei+2k , foi+sp+ fei+7h` ( foit49 + föi+3k` i=0 n-1 n-2 Jei+39+J6i+2k +i=0 n-1 i=0 n-2 Jei+5P+/ei+4h S6i+19+Seik i=0 n-2 (2р + h) fei+7P+ f6i+6h) (föi+39 + fei+2k ) i=0 n-2 + n-2 Jen+19+ Jen Jeng+fen-1k i=0 i=0 i=0 n-2 fei+8P + fei+7h\ ( fei+49 + fei+3k` fei+7p + fei+oh)\ fei+34 + f6i+2k, (2p + h \ )II = r p+h i=0 n-2 (2p+h pth (Tei+7p+Sei+ah i=0 fei+49+S6i+ak\ Jei+39+Se+zk) + n-1 n-2 fei-1p+ fei-2h fei46p+ fei4sh (Leng+fen-1k h+P Jen+19+fonk f6i+sp+ fei+ah | fsipt Sei-ih i=0 i=0 15 - -( п-2 föi+49 + fei+3k \ foi+sP + fei+7h\ ( fei+7P + f6i+oh )\ fôi+39 + fei+2k) 2р + p+h)I I6n-2 i=0 T-2 (2p+h) T (fsitsp+fai47h S6i+49+So143k Joi+39+ Sei+2k) h i=0 + fonq+fon-ik ( Jên+19+fenk) h + p n-2 (2р + h) p+h I6n-2 fei+7P + fei+6h ( Soi+39 + f6i+2k ) i=0 n-2 hr feit49+Sei+3k i=0 + h Jên +19+ fenk n-2 2р + föi+49 + fei+3k` 6n-2 = r p+h Sei+7P + fei+sh ) \ Foi+39 + fei+2k ) i=0 n-2 Joi+7p+fes+6h) (Tei+39+Sei+2k i=0 fon +19+fank+Sanq+Son-1k Sen+19+ fenk n-2 ( foi+8P + f6i+7h` foi+7P + fei+ch )foi+39 + foi+2k, 2p + h föi+49 + foi+3k\ = P+h i=0 n-2 2p+h p+h Joi+7p+fei+sh) Foi439+fei+2k i=0 fen+29+føn+1k fon+19+fenk n-2 fei+49 + fei+3k` Joi+7P + foi+oh ) (Foi-39 + fei+2k ) [* + fon+29 + fon+1k] '2р + h) fön+19 + fenk p+h i=0 (2p+ h T (foit8P+ fei+7h\ (fei+49 + fei+3k\ [fon+29 + fön+1k + fon+19+ fonk" foi+7P + foi+6h) (foi+39 + foi+2k / п-2 fon+29 + fön+1k i=0 п-2 fei+4q + fei+3k\ [ fon+39 + f6n+2k] föi+7P + fei+6h ) (fBi+39 + f6i+2k) [fön+29 + fén+1k (2p + h) AP+h i=0 16 Therefore ( föi+2P + fei+1h` fei+ip + fesh)(Gi+49 + foi+3k* n-1 X6n-2 = r foi+39 + f6i+2k i=0 Also, other formulas can be proved similarly. Hence, the proof is completed.
Brn-1In-2
YIn-1 + &xn-4
In+1 = a1n-2 +
n = 0, 1,...,
(1)
1
The following special case of Eq.(1) has been studied
In-1In-2
Int1 = In-2+
(8)
Tn-1 + In-4
where the initial conditions r-4, I-3, T-2, T-1,and xo are arbitrary non zero real
numbers.
Theorem 4. Let {zn}-4 be a solution of Eq.-(8). Then for n = 0, 1,2, ...
fep + fes-ih ( foi+29 + foiik
Jei-1p+ fei-zh)
fo419 + Sauk)
farq + Sai-1k
feirap + forah ) To-19 + foi-ak ,
(Sei+aP + fot+3h)
fei-2P + fei+1h (foi+19 + Sei+ak
= rT
fei+1P+ fesh ) Joi+39 + fei+2k )
(fei+ep + fes+sh\ (foi+29 + fei+ik
Soi-sp + feisah)
fei+ap + fei+ah\ ( feiseq + fei-sk
Sai+ap + fei+2h ) Jai459 + Seisak )
fei+19 + fask
2p +h
II ap+ fesch) (Tars9 + Suvzk,
foi+sP + fouth ( Seisa9 + Soirak
In+1 =
p+h
where r-4 = h, r-3 = k, z-2 = r, r-1 = P, 2o = q, {fm}-1 = {1,0,1,1,2, 3, 5, 8, .}.
Proof: For n -0 the result holds. Now suppose that n>0 and that our assumption
holds for n - 2. That is;
feirap + foi+ah
Jei+ap + fei42h) J6i-19 + fei-2k
fauq + foi-1 k
i-0
fai+1p + fesh ) fet439 + feirak)
Joi+ep + fei+sh (fei+29 + foi+zk
foi+sp + fes+ah)
Iom-6 = 9TT(fei-4p + foi+3h (fei+09 + fei-sk
+ fei+zh) \Torr39 + fei+ak ) *
(2p + h ( foi-sp+ fesuzh (foir49 + foi+ak
Ji+7p + Soisgh) Tausg + Soi+zk
p+h
Now, it follows from Eq.(8) that
IGn-4 = Iộn-7 +
11
feisep + fo+sh ( foi+29 + fe+ik
Sunsp + Seissh ) (Tus1g+ fesk)
= p||
•II )( )II( ) )
(foi+op + fou-sh ( fei-29 + fei+ikY
1foi+sp + foi+sh)
foi+19 + fosk
+ A
PIT fasop + foish) ( for-29 + Sousik
Joi4sp+fostah)
n-2
= p
Fei+sp + feirah)
feir19 + faik
pg
( foi+6P + fei+sh) ( fei+29 + fei-ik
=PlI(asp+ fash)( Far1q + Sak )
12
PII
´ fouvap + faunh\ ( fa-29 + feieik)
Sos+19 + Souk
PIIusp + Jourah)
1+ (
PII( ) )
-PT (furep + fouosh (fau29 + fuosk
Sei-sp + foi-gh )
fois19 + fuk)
n-2
PII( (unt
Jeusp + Sanah)
Sesig+ fauk
(An
( fesep + fursh ( fev29 + Jairak1+a+ fon-ek
- PII
Sen-o9 + fon-zk]
n-2
Sen-s9 + Son -ak-"
Sei+ep + Sei+sh) ( Su-29 + Sai+ik [ Sen-sq + Sen-sk
= PII(sp+ fursh)Tuer9+ feck ) [Ton-39 + Sen-sk]
Therefore
R-1
Also, from Eq.(8), we see that
Tusap + Seurzli ) ( Jonnog + Senek )
( )--II( )( )
13
Transcribed Image Text:Brn-1In-2 YIn-1 + &xn-4 In+1 = a1n-2 + n = 0, 1,..., (1) 1 The following special case of Eq.(1) has been studied In-1In-2 Int1 = In-2+ (8) Tn-1 + In-4 where the initial conditions r-4, I-3, T-2, T-1,and xo are arbitrary non zero real numbers. Theorem 4. Let {zn}-4 be a solution of Eq.-(8). Then for n = 0, 1,2, ... fep + fes-ih ( foi+29 + foiik Jei-1p+ fei-zh) fo419 + Sauk) farq + Sai-1k feirap + forah ) To-19 + foi-ak , (Sei+aP + fot+3h) fei-2P + fei+1h (foi+19 + Sei+ak = rT fei+1P+ fesh ) Joi+39 + fei+2k ) (fei+ep + fes+sh\ (foi+29 + fei+ik Soi-sp + feisah) fei+ap + fei+ah\ ( feiseq + fei-sk Sai+ap + fei+2h ) Jai459 + Seisak ) fei+19 + fask 2p +h II ap+ fesch) (Tars9 + Suvzk, foi+sP + fouth ( Seisa9 + Soirak In+1 = p+h where r-4 = h, r-3 = k, z-2 = r, r-1 = P, 2o = q, {fm}-1 = {1,0,1,1,2, 3, 5, 8, .}. Proof: For n -0 the result holds. Now suppose that n>0 and that our assumption holds for n - 2. That is; feirap + foi+ah Jei+ap + fei42h) J6i-19 + fei-2k fauq + foi-1 k i-0 fai+1p + fesh ) fet439 + feirak) Joi+ep + fei+sh (fei+29 + foi+zk foi+sp + fes+ah) Iom-6 = 9TT(fei-4p + foi+3h (fei+09 + fei-sk + fei+zh) \Torr39 + fei+ak ) * (2p + h ( foi-sp+ fesuzh (foir49 + foi+ak Ji+7p + Soisgh) Tausg + Soi+zk p+h Now, it follows from Eq.(8) that IGn-4 = Iộn-7 + 11 feisep + fo+sh ( foi+29 + fe+ik Sunsp + Seissh ) (Tus1g+ fesk) = p|| •II )( )II( ) ) (foi+op + fou-sh ( fei-29 + fei+ikY 1foi+sp + foi+sh) foi+19 + fosk + A PIT fasop + foish) ( for-29 + Sousik Joi4sp+fostah) n-2 = p Fei+sp + feirah) feir19 + faik pg ( foi+6P + fei+sh) ( fei+29 + fei-ik =PlI(asp+ fash)( Far1q + Sak ) 12 PII ´ fouvap + faunh\ ( fa-29 + feieik) Sos+19 + Souk PIIusp + Jourah) 1+ ( PII( ) ) -PT (furep + fouosh (fau29 + fuosk Sei-sp + foi-gh ) fois19 + fuk) n-2 PII( (unt Jeusp + Sanah) Sesig+ fauk (An ( fesep + fursh ( fev29 + Jairak1+a+ fon-ek - PII Sen-o9 + fon-zk] n-2 Sen-s9 + Son -ak-" Sei+ep + Sei+sh) ( Su-29 + Sai+ik [ Sen-sq + Sen-sk = PII(sp+ fursh)Tuer9+ feck ) [Ton-39 + Sen-sk] Therefore R-1 Also, from Eq.(8), we see that Tusap + Seurzli ) ( Jonnog + Senek ) ( )--II( )( ) 13
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education