= [₁ n = (1, 2) and D = -4 4 3 What is D.n? Enter your answer as a vector by filling in the boxes.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

n⃗ =⟨−1,  −2⟩ and D=[−4423].

What is D⋅n⃗ ?

Enter your answer as a vector by filling in the boxes.

To solve the problem, we need to calculate the product of the matrix \( D \) and the vector \( \vec{n} \).

Given:
\[ \vec{n} = \langle -1, -2 \rangle \]
and
\[ D = \begin{bmatrix} -4 & 2 \\ 4 & 3 \end{bmatrix} \]

To find \( D \cdot \vec{n} \), we perform matrix multiplication.

Matrix \( D \) is a 2x2 matrix:
\[ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]
Where:
\[ a = -4, \quad b = 2 \]
\[ c = 4, \quad d = 3 \]

The vector \( \vec{n} \) is a 2x1 vector:
\[ \begin{bmatrix} x \\ y \end{bmatrix} \]
Where:
\[ x = -1, \quad y = -2 \]

The result of multiplying matrix \( D \) by vector \( \vec{n} \) is a new 2x1 vector \( \vec{r} = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} \), where:
\[ r_1 = a \cdot x + b \cdot y \]
\[ r_2 = c \cdot x + d \cdot y \]

Plugging in the values:
\[ r_1 = (-4) \cdot (-1) + 2 \cdot (-2) \]
\[ r_1 = 4 + (-4) \]
\[ r_1 = 0 \]

\[ r_2 = 4 \cdot (-1) + 3 \cdot (-2) \]
\[ r_2 = -4 + (-6) \]
\[ r_2 = -10 \]

Therefore, the resulting vector \( D \cdot \vec{n} \) is:
\[ \vec{r} = \begin{bmatrix} 0 \\ -10 \end{bmatrix} \]

Enter your answer as a vector by filling in the boxes:
\[ \langle \boxed{0}, \boxed{-10} \rangle \]
Transcribed Image Text:To solve the problem, we need to calculate the product of the matrix \( D \) and the vector \( \vec{n} \). Given: \[ \vec{n} = \langle -1, -2 \rangle \] and \[ D = \begin{bmatrix} -4 & 2 \\ 4 & 3 \end{bmatrix} \] To find \( D \cdot \vec{n} \), we perform matrix multiplication. Matrix \( D \) is a 2x2 matrix: \[ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \] Where: \[ a = -4, \quad b = 2 \] \[ c = 4, \quad d = 3 \] The vector \( \vec{n} \) is a 2x1 vector: \[ \begin{bmatrix} x \\ y \end{bmatrix} \] Where: \[ x = -1, \quad y = -2 \] The result of multiplying matrix \( D \) by vector \( \vec{n} \) is a new 2x1 vector \( \vec{r} = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} \), where: \[ r_1 = a \cdot x + b \cdot y \] \[ r_2 = c \cdot x + d \cdot y \] Plugging in the values: \[ r_1 = (-4) \cdot (-1) + 2 \cdot (-2) \] \[ r_1 = 4 + (-4) \] \[ r_1 = 0 \] \[ r_2 = 4 \cdot (-1) + 3 \cdot (-2) \] \[ r_2 = -4 + (-6) \] \[ r_2 = -10 \] Therefore, the resulting vector \( D \cdot \vec{n} \) is: \[ \vec{r} = \begin{bmatrix} 0 \\ -10 \end{bmatrix} \] Enter your answer as a vector by filling in the boxes: \[ \langle \boxed{0}, \boxed{-10} \rangle \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 10 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,