Multiplication on the number pairs is defined as follows: (a, b) · (c, d) defined in a similar way to O above from multiplication of number pairs. (ad + bc, ac + bd).O in Tis 9. Show that the definition of 8 makes sense.
Multiplication on the number pairs is defined as follows: (a, b) · (c, d) defined in a similar way to O above from multiplication of number pairs. (ad + bc, ac + bd).O in Tis 9. Show that the definition of 8 makes sense.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
please answer question number 9
![Let I be the set of equivalence classes as defined as above. Define O as follows: if A and B are
equivalence classes in T, A O B is the equivalence class of the sum of an element from A and an
element from B. For example, using the A and B from #6: (2,5) + (4,2) = (6,7), so, A OB is the
equivalence class of (6,7): {(0,1), (1,2), (2,3), ...} Đis well defined because as we showed in #6, the
result of the operation does not depend on which representatives of the equivalence classes we choose.
7. Show that {T,O}is a group.
8. Match the elements in T with the integers and show that {T,O} has the same structure as the
integers with addition.
Multiplication on the number pairs is defined as follows: (a, b) · (c, d) = (ad + bc, ac + bd).O in T is
defined in a similar way to O above from multiplication of number pairs.
9. Show that the definition of 8 makes sense.
10. Perhaps surprisingly, {T,8} has the same structure as the integers with multiplication. Check
that on some examples. Why does this work?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3fa423e9-40e4-49f9-ba34-48d1aa8524f6%2Fa0b66a08-e389-4d66-85b7-96599760d46b%2Fqzh8j5y_processed.png&w=3840&q=75)
Transcribed Image Text:Let I be the set of equivalence classes as defined as above. Define O as follows: if A and B are
equivalence classes in T, A O B is the equivalence class of the sum of an element from A and an
element from B. For example, using the A and B from #6: (2,5) + (4,2) = (6,7), so, A OB is the
equivalence class of (6,7): {(0,1), (1,2), (2,3), ...} Đis well defined because as we showed in #6, the
result of the operation does not depend on which representatives of the equivalence classes we choose.
7. Show that {T,O}is a group.
8. Match the elements in T with the integers and show that {T,O} has the same structure as the
integers with addition.
Multiplication on the number pairs is defined as follows: (a, b) · (c, d) = (ad + bc, ac + bd).O in T is
defined in a similar way to O above from multiplication of number pairs.
9. Show that the definition of 8 makes sense.
10. Perhaps surprisingly, {T,8} has the same structure as the integers with multiplication. Check
that on some examples. Why does this work?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)