Multiple answer- please select all correct answers. For which of the following functions is the inverse relation a function? Caution- No partial credit. Ok:(-0, -1/3]→R where k (x)=x³-x O9:[0,1]→R where g (x)=x3-x O f:R→R where f(x)=x3-x h: [1,00) R where h (x)=x3-x

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
**Question 12**

**Topic:** Inverse Functions

**Instruction:** This is a multiple-choice question. Please select all correct answers. For which of the following functions is the inverse relation a function? Note: There is no partial credit for this question.

1. **Function \( k \):** 
   - Domain: \((-\infty, -\frac{1}{\sqrt{3}}]\)
   - Codomain: \(\mathbb{R}\)
   - Function Definition: \( k(x) = x^3 - x \)

2. **Function \( g \):** 
   - Domain: \([0, 1]\)
   - Codomain: \(\mathbb{R}\)
   - Function Definition: \( g(x) = x^3 - x \)

3. **Function \( f \):** 
   - Domain: \(\mathbb{R}\)
   - Codomain: \(\mathbb{R}\)
   - Function Definition: \( f(x) = x^3 - x \)

4. **Function \( h \):** 
   - Domain: \([1, \infty)\)
   - Codomain: \(\mathbb{R}\)
   - Function Definition: \( h(x) = x^3 - x \)

**Note:** Understanding which intervals make the inverse a function involves analyzing where the original function \( x^3 - x \) is one-to-one.
Transcribed Image Text:**Question 12** **Topic:** Inverse Functions **Instruction:** This is a multiple-choice question. Please select all correct answers. For which of the following functions is the inverse relation a function? Note: There is no partial credit for this question. 1. **Function \( k \):** - Domain: \((-\infty, -\frac{1}{\sqrt{3}}]\) - Codomain: \(\mathbb{R}\) - Function Definition: \( k(x) = x^3 - x \) 2. **Function \( g \):** - Domain: \([0, 1]\) - Codomain: \(\mathbb{R}\) - Function Definition: \( g(x) = x^3 - x \) 3. **Function \( f \):** - Domain: \(\mathbb{R}\) - Codomain: \(\mathbb{R}\) - Function Definition: \( f(x) = x^3 - x \) 4. **Function \( h \):** - Domain: \([1, \infty)\) - Codomain: \(\mathbb{R}\) - Function Definition: \( h(x) = x^3 - x \) **Note:** Understanding which intervals make the inverse a function involves analyzing where the original function \( x^3 - x \) is one-to-one.
Expert Solution
Step 1

Which of the following functions is the inverserelation a function?1  k:-,13, where kx=x3-x2  g:0,1, where gx=x3-x3  f:, where fx=x3-x4  h:1,,where hx=x3-x

Step 2

1Explanation:¯Consider a given function kx=x3-x defined on domain-,13.As the polynomial k is continuous and differential on domain-,13.k-=- and k13=133-13=-233.hence,its range=-,-233Co-domain.As the function k is one-one but not onto because its rangeis not equal to its co-domain.Therefore,inverse function of k does not exist.

Step 3

2Explanation:¯Consider a function g:0,1, where gx=x3-x.As a function g is a polynomial of degree three.Every continuous function map compact to compact set.Hence,range of g will be compact set which is not equalto set of real number .It implies that the function g is not an onto function.Hence,its inverse does not exist.

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Rules of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,