Mott ." cometer, which we can analyze later in Chap. 7. A small ball of diameter D and density p, falls through a tube of test liquid (p. µ). The fall velocity V is calculated by the time to fall a measured distance. The formula for calculating the viscosity of the fluid is discusses a simple falling-ball vis- (Po – p)gD² 18 V This result is limited by the requirement that the Reynolds number (pVD/u) be less than 1.0. Suppose a steel ball (SG = 7.87) of diameter 2.2 mm falls in SAE 25W oil (SG = 0.88) at 20°C. The measured fall velocity is 8.4 cm/s. (a) What is the viscosity of the oil, in kg/m-s? (b) Is the Reynolds num- ber small enough for a valid estimate?
Mott ." cometer, which we can analyze later in Chap. 7. A small ball of diameter D and density p, falls through a tube of test liquid (p. µ). The fall velocity V is calculated by the time to fall a measured distance. The formula for calculating the viscosity of the fluid is discusses a simple falling-ball vis- (Po – p)gD² 18 V This result is limited by the requirement that the Reynolds number (pVD/u) be less than 1.0. Suppose a steel ball (SG = 7.87) of diameter 2.2 mm falls in SAE 25W oil (SG = 0.88) at 20°C. The measured fall velocity is 8.4 cm/s. (a) What is the viscosity of the oil, in kg/m-s? (b) Is the Reynolds num- ber small enough for a valid estimate?
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![Mott ."
cometer, which we can analyze later in Chap. 7. A small
ball of diameter D and density p, falls through a tube of test
liquid (p. µ). The fall velocity V is calculated by the time to
fall a measured distance. The formula for calculating the
viscosity of the fluid is
discusses a simple falling-ball vis-
(Po – p)gD²
18 V
This result is limited by the requirement that the Reynolds
number (pVD/u) be less than 1.0. Suppose a steel ball (SG =
7.87) of diameter 2.2 mm falls in SAE 25W oil (SG = 0.88)
at 20°C. The measured fall velocity is 8.4 cm/s. (a) What is
the viscosity of the oil, in kg/m-s? (b) Is the Reynolds num-
ber small enough for a valid estimate?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F064b75ee-ca25-415a-a083-4fec9ead147f%2F640e735b-4f1f-4a85-adc0-e0621774c287%2Fx8xceoc.png&w=3840&q=75)
Transcribed Image Text:Mott ."
cometer, which we can analyze later in Chap. 7. A small
ball of diameter D and density p, falls through a tube of test
liquid (p. µ). The fall velocity V is calculated by the time to
fall a measured distance. The formula for calculating the
viscosity of the fluid is
discusses a simple falling-ball vis-
(Po – p)gD²
18 V
This result is limited by the requirement that the Reynolds
number (pVD/u) be less than 1.0. Suppose a steel ball (SG =
7.87) of diameter 2.2 mm falls in SAE 25W oil (SG = 0.88)
at 20°C. The measured fall velocity is 8.4 cm/s. (a) What is
the viscosity of the oil, in kg/m-s? (b) Is the Reynolds num-
ber small enough for a valid estimate?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
The data given is,
- The specific gravity of steel ball, SGb = 7.87
- The diameter of the steel ball, D = 2.2 mm = 0.0022 m
- Fall velocity, V = 8.4 cm/s = 0.084 m/s
- The specific gravity of oil, SG = 0.88
Step 2
The formula employed with the problem to calculate viscosity is as follows,
The density of ball and oil will be given as follows,
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY