Most of the energy released in the collapse of a massive star to a neutron star (a core collapse supernova) is in the form of neutrinos. If the just-formed neutron star has a mass M = 1.4M⊙ and a radius R = 10 km, estimate the mean nucleon density, in cm−3. Find the mean free path, in cm, of a neutrino inside the neutron star, assuming the density you found and a cross section for scattering of neutrinos on neutrons of σνn = 10−42 cm2
Most of the energy released in the collapse of a massive star to a neutron star (a core collapse supernova) is in the form of neutrinos. If the just-formed neutron star has a mass M = 1.4M⊙ and a radius R = 10 km, estimate the mean nucleon density, in cm−3. Find the mean free path, in cm, of a neutrino inside the neutron star, assuming the density you found and a cross section for scattering of neutrinos on neutrons of σνn = 10−42 cm2
Related questions
Question
Most of the energy released in the collapse of a massive star to a neutron star (a core collapse supernova) is in the form of neutrinos.
- If the just-formed neutron star has a mass M = 1.4M⊙ and a radius R = 10 km, estimate the mean nucleon density, in cm−3. Find the mean free path, in cm, of a neutrino inside the neutron star, assuming the density you found and a cross section for scattering of neutrinos on neutrons of σνn = 10−42 cm2.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images