Most globular proteins denature and lose their activity when briefly heated to 65 °C. However, globular proteins that contain multiple disulfide bonds often require longer heat exposure at higher temperatures to denature them. One such protein is bovine pancreatic trypsin inhibitor (BPTI). BPTI has 58 amino acid residues in a single peptide chain and contains three disulfide bonds. After cooling a solution of heat denatured BPTI, the protein regains its activity. What is the molecular basis for this property of BPTI? Disulfide bonds make BPTI more rigid at high temperatures than low temperatures. Disulfide bonds protect BPTI from peptide bond hydrolysis during heating. Disulfide bonds lower the optimal temperature of the reaction BPTI participates in. Disulfide bonds prevent the complete unfolding of BPTI at high temperatures.
Nucleotides
It is an organic molecule made up of three basic components- a nitrogenous base, phosphate,and pentose sugar. The nucleotides are important for metabolic reactions andthe formation of DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).
Nucleic Acids
Nucleic acids are essential biomolecules present in prokaryotic and eukaryotic cells and viruses. They carry the genetic information for the synthesis of proteins and cellular replication. The nucleic acids are of two types: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The structure of all proteins and ultimately every biomolecule and cellular component is a product of information encoded in the sequence of nucleic acids. Parts of a DNA molecule containing the information needed to synthesize a protein or an RNA are genes. Nucleic acids can store and transmit genetic information from one generation to the next, fundamental to any life form.
Answer both parts of #1
Trending now
This is a popular solution!
Step by step
Solved in 4 steps