Moles SCN- used in titration (mol) Moles of Agt in 20.0 mL titrated (mol) [Ag*lequil (M) X= [Ag*Jinit - [Ag*lequil = Change (M) solve for flask d e and f
Ionic Equilibrium
Chemical equilibrium and ionic equilibrium are two major concepts in chemistry. Ionic equilibrium deals with the equilibrium involved in an ionization process while chemical equilibrium deals with the equilibrium during a chemical change. Ionic equilibrium is established between the ions and unionized species in a system. Understanding the concept of ionic equilibrium is very important to answer the questions related to certain chemical reactions in chemistry.
Arrhenius Acid
Arrhenius acid act as a good electrolyte as it dissociates to its respective ions in the aqueous solutions. Keeping it similar to the general acid properties, Arrhenius acid also neutralizes bases and turns litmus paper into red.
Bronsted Lowry Base In Inorganic Chemistry
Bronsted-Lowry base in inorganic chemistry is any chemical substance that can accept a proton from the other chemical substance it is reacting with.
- Moles SCN- used in titration (mol)
Moles of Agt in 20.0 mL titrated (mol) - [Ag*lequil (M)
X= [Ag*Jinit - [Ag*lequil = Change (M)
solve for flask d e and f
![C. Calculations
1. Assume that the total volume of each saturated solution is 55.00 mL.
2. When you prepare this equilibrium by mixing solutions, you are approaching this equilibrium
from the right. Use an 'ICE Table' approach to getting the equilibrium concentrations
[Ag leq and [C₂H302 leq in each of your six flasks.
AgC₂H3O2 (s)
Initial
Change
Equilibrium
3. The Initial [Aglinit and [C₂H3O₂ linit concentrations can be calculated from the molarities
and volumes of solutions used. The initial concentration refers to the system after mixing but
before precipitation. You will need to refer to the tables on pages 2 and 3 to get this
information.
example a: [Ag+]init
Ag+ (aq) + C₂H3O₂ (aq)
[C₂H3O2 linit
[Ag+] init
-X
([Ag+]init - X)
total moles of Ag+ put into flask a
total liters solution in flask a.
in sample a.
4. The Change referred to in the' ICE table' occurs when precipitate forms after mixing. The
equilibrium shifts to the left, reducing the silver and the acetate ion concentrations by X
mol/L.
=
=
0.0350 L solutions x 0.250 mol Ag/L solution
0.0550 L
= 0.159 M
-X
([C₂H3O2-linit - X)
5. In each of your samples, you use your titration volume, V mL, to calculate the total moles of
Ag+ in the 20.0 mL sample of saturated solution you titrated by doing a stoichiometry
calculation using the chemical equation for the titration reaction.
Ag+ (aq) + SCN- (aq) -> AgSCN(s)
?mol
V mL
0.0500 M
V mL KSCN solution x 0.0500 mol KSCN x
1000 mL KSCN sol
6. Calculate [Ag+] at equilibrium
[Ag*lequil
1 mol SCN- x
1 mol KSCN
1 mol Ag+
1 mol SCN-
(5.00 x 10-5 x V) moles Ag+ in 20.0 mL
(5.00 x 10-5 x V moles Ag+) = (2.5 x 10-3 x V) mol/L
0.0200 L solution](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9b0e7686-0c0d-4eba-ac81-54e736b47f2f%2Fec03efb2-85b5-4faa-b497-c8f09ab5f26b%2Fgdjyqjv_processed.jpeg&w=3840&q=75)


Trending now
This is a popular solution!
Step by step
Solved in 3 steps









