Mild steel nails were driven through a solid wood wall consisting of two layers, each 15 mm thick, for reinforcement. If the total cross- sectional area of the nails is 0.75% of the wall area, determine the unit thermal conductance of the composite wall, total heat flow, heat flow through the nail alone and the percent of the total heat flow that passes through the nails when the temperature difference across the wall is 35°C. Neglect contact resistance between the wood layers. Wood (Pine) (kyw) = 0.15 W/(m K); Mild steel (1% C) (kg) = 43 W/(m K)
Mild steel nails were driven through a solid wood wall consisting of two layers, each 15 mm thick, for reinforcement. If the total cross- sectional area of the nails is 0.75% of the wall area, determine the unit thermal conductance of the composite wall, total heat flow, heat flow through the nail alone and the percent of the total heat flow that passes through the nails when the temperature difference across the wall is 35°C. Neglect contact resistance between the wood layers. Wood (Pine) (kyw) = 0.15 W/(m K); Mild steel (1% C) (kg) = 43 W/(m K)
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter1: Basic Modes Of Heat Transfer
Section: Chapter Questions
Problem 1.37P: 1.37 Mild steel nails were driven through a solid wood wall consisting of two layers, each 2.5-cm...
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning