Determine u(x,t) para o problema abaixo: a2u 25 ax2 u(0, t) = u(16, t) = 0, t>0 u(x, 0) = 0, du(x, 0) au at2 (0 0 %3D %3D (0 < x < 16) %3! = 2x - 1 Əx O a. 32 25nn u(x, t) = > [1-33(-1)"]sen sen 5n2r (x) 16 16 n=1 O b. -32 3nn u(x, t) = > 3r22 [31(-1)" + 1]sen (x) x sen 16 3n2n2 16 n=1 5nm 32 [1-33(-1)"]sen () 16 u(x, t) = x sen 16 %3D 5n2n2 n=1 O d. 25nn -32 u(x, t) = L 25n²n? [31(-1)" + 1]sen () ser 16 16 n=1 -32 [31(-1)" +1]sen 5nn u(x, t) = 131(-1)" + 1]sen (x) sen ( %3D 5n2n2 n=1 16

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Determine u(x,t) para o problema abaixo:
a2u
25
ax2
u(0, t) = u(16, t) = 0, t>0
u(x, 0) = 0,
du(x, 0)
au
at2
(0 <x < 16,t > 0
%3D
%3D
(0 < x < 16)
%3!
= 2x - 1
Əx
O a.
32
25nn
u(x, t) = >
[1-33(-1)"]sen
sen
5n2r (x)
16
16
n=1
O b.
-32
3nn
u(x, t) = > 3r22 [31(-1)" + 1]sen (x)
x sen
16
3n2n2
16
n=1
5nm
32
[1-33(-1)"]sen
()
16
u(x, t) =
x sen
16
%3D
5n2n2
n=1
O d.
25nn
-32
u(x, t) = L 25n²n?
[31(-1)" + 1]sen () ser
16
16
n=1
-32
[31(-1)" +1]sen
5nn
u(x, t) =
131(-1)" + 1]sen (x) sen (
%3D
5n2n2
n=1
16
Transcribed Image Text:Determine u(x,t) para o problema abaixo: a2u 25 ax2 u(0, t) = u(16, t) = 0, t>0 u(x, 0) = 0, du(x, 0) au at2 (0 <x < 16,t > 0 %3D %3D (0 < x < 16) %3! = 2x - 1 Əx O a. 32 25nn u(x, t) = > [1-33(-1)"]sen sen 5n2r (x) 16 16 n=1 O b. -32 3nn u(x, t) = > 3r22 [31(-1)" + 1]sen (x) x sen 16 3n2n2 16 n=1 5nm 32 [1-33(-1)"]sen () 16 u(x, t) = x sen 16 %3D 5n2n2 n=1 O d. 25nn -32 u(x, t) = L 25n²n? [31(-1)" + 1]sen () ser 16 16 n=1 -32 [31(-1)" +1]sen 5nn u(x, t) = 131(-1)" + 1]sen (x) sen ( %3D 5n2n2 n=1 16
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,