Maximum Power Transfer a. Consider the simple the series circuit of Figure 12.1 using E = 10 volts and Ri = 3.3 k. Ri forms a simple voltage divider with RL. The power in the load is VL2 /RL and the total circuit power is E 2 /(Ri+RL). The larger the value of RL, the greater the load voltage, however, this does not mean that very large values of RL will produce maximum load power due to the division by RL. That is, at some point VL2 will grow more slowly than RL itself. This crossover point should occur when RL is equal to Ri. Further, note that as RL increases, total circuit power decreases due to increasing total resistance. This should lead to an increase in efficiency. An alternate way of looking at the efficiency question is to note that as RL increases, circuit current decreases. As power is directly proportional to the square of current, as RL increases the power in Ri must decrease leaving a larger percentage of total power going to RL. b.Using RL = 30, compute the expected values for load voltage, load power, total power and efficiency, and record them in Table 12.1. Repeat for the remaining RL values in the Table. For the middle entry labeled Actual, insert the measured value of the 3.3 k used for Ri.
KVL and KCL
KVL stands for Kirchhoff voltage law. KVL states that the total voltage drops around the loop in any closed electric circuit is equal to the sum of total voltage drop in the same closed loop.
Sign Convention
Science and technology incorporate some ideas and techniques of their own to understand a system skilfully and easily. These techniques are called conventions. For example: Sign conventions of mirrors are used to understand the phenomenon of reflection and refraction in an easier way.
Maximum Power Transfer
a. Consider the simple the series circuit of Figure 12.1 using E = 10 volts and Ri = 3.3 k. Ri forms a simple voltage divider with RL. The power in the load is VL2 /RL and the total circuit power is E 2 /(Ri+RL). The larger the value of RL, the greater the load voltage, however, this does not mean that very large values of RL will produce maximum load power due to the division by RL. That is, at some point VL2 will grow more slowly than RL itself. This crossover point should occur when RL is equal to Ri. Further, note that as RL increases, total circuit power decreases due to increasing total resistance. This should lead to an increase in efficiency. An alternate way of looking at the efficiency question is to note that as RL increases, circuit current decreases. As power is directly proportional to the square of current, as RL increases the power in Ri must decrease leaving a larger percentage of total power going to RL.
b.Using RL = 30, compute the expected values for load voltage, load power, total power and efficiency, and record them in Table 12.1. Repeat for the remaining RL values in the Table. For the middle entry labeled Actual, insert the measured value of the 3.3 k used for Ri.
Trending now
This is a popular solution!
Step by step
Solved in 7 steps with 1 images