max  z =  x1 + 3x2 s.t.      x1 + 2x2 ≥ 6          2x1 +  x2 ≤ 8           x1, x2 ≥ 0 For the LP above, which of the following is its standard form?     max z = x1 + 3x2 s.t.    x1 + 2x2 + s1     = 6        2x1 +  x2     + s2 = 8         x1, x2, s1, s2 ≥ 0     max z = x1 + 3x2 s.t.    x1 + 2x2 – e1     = 6        2x1 +  x2     – e2 = 8         x1, x2, e1, e2 ≥ 0     max z = x1 + 3x2 s.t.    x1 + 2x2 + s1     = 6        2x1 +  x2     – e2 = 8         x1, x2, s1, e2 ≥ 0     max z = x1 + 3x2 s.t.    x1 + 2x2 – e1     = 6        2x1 +  x2     + s2 = 8         x1, x2, e1, s2 ≥ 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
  1. max  z =  x1 + 3x2

    s.t.      x1 + 2x2 ≥ 6

             2x1 +  x2 ≤ 8

              x1x2 ≥ 0

    For the LP above, which of the following is its standard form?

       

    max z = x1 + 3x2

    s.t.    x1 + 2x2 + s1     = 6

           2x1 +  x2     + s2 = 8

            x1x2s1s2 ≥ 0

       

    max z = x1 + 3x2

    s.t.    x1 + 2x2 – e1     = 6

           2x1 +  x2     – e2 = 8

            x1x2e1e2 ≥ 0

       

    max z = x1 + 3x2

    s.t.    x1 + 2x2 + s1     = 6

           2x1 +  x2     – e2 = 8

            x1x2s1e2 ≥ 0

       

    max z = x1 + 3x2

    s.t.    x1 + 2x2 – e1     = 6

           2x1 +  x2     + s2 = 8

            x1x2e1s2 ≥ 0

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,