max x² + y² subject to: a² + xy + y² = 3
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
how to solve the systems of equations please teach explain step by step
![Solution:
Next, solve the system
or
max 2² +²
subject to: x² + xy + y² = 3
L(x, y, A) = (x² + y²) + (x² + xy + y² − 3)
Ə
:((x² + y²) + λ (x² + xy + y² − 3)) = A (2x+y)+2x
?х
: ((x² + y²) + λ (x² + xy + y² − 3)) = A (x + 2y) + 2y
· ((x² + y²) + λ (x² + xy + y² − 3)) = x² + xy + −3
远古西征
||||||
= 0
A (2x+y)+2x = 0
X(x+2y)+2y=0
[x² + xy + y² − 3=0
The system has the following real solutions:
(x, y, X) = (-1,-1, -2/3), (x, y, A) = (1, 1, -2/3), (x, y, X) = (-√3, √3, -2) (x, y, X) = (√³3, -√3, -2)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4641886b-89da-403b-8f60-7233a6fc439f%2Fcfed36e5-b117-487c-962e-5261414df4fe%2Fbbmn43p_processed.png&w=3840&q=75)
Transcribed Image Text:Solution:
Next, solve the system
or
max 2² +²
subject to: x² + xy + y² = 3
L(x, y, A) = (x² + y²) + (x² + xy + y² − 3)
Ə
:((x² + y²) + λ (x² + xy + y² − 3)) = A (2x+y)+2x
?х
: ((x² + y²) + λ (x² + xy + y² − 3)) = A (x + 2y) + 2y
· ((x² + y²) + λ (x² + xy + y² − 3)) = x² + xy + −3
远古西征
||||||
= 0
A (2x+y)+2x = 0
X(x+2y)+2y=0
[x² + xy + y² − 3=0
The system has the following real solutions:
(x, y, X) = (-1,-1, -2/3), (x, y, A) = (1, 1, -2/3), (x, y, X) = (-√3, √3, -2) (x, y, X) = (√³3, -√3, -2)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)