max x² + y² subject to: a² + xy + y² = 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

how to solve the systems of equations please teach  explain step by step

 

Solution:
Next, solve the system
or
max 2² +²
subject to: x² + xy + y² = 3
L(x, y, A) = (x² + y²) + (x² + xy + y² − 3)
Ə
:((x² + y²) + λ (x² + xy + y² − 3)) = A (2x+y)+2x
?х
: ((x² + y²) + λ (x² + xy + y² − 3)) = A (x + 2y) + 2y
· ((x² + y²) + λ (x² + xy + y² − 3)) = x² + xy + −3
远古西征
||||||
= 0
A (2x+y)+2x = 0
X(x+2y)+2y=0
[x² + xy + y² − 3=0
The system has the following real solutions:
(x, y, X) = (-1,-1, -2/3), (x, y, A) = (1, 1, -2/3), (x, y, X) = (-√3, √3, -2) (x, y, X) = (√³3, -√3, -2)
Transcribed Image Text:Solution: Next, solve the system or max 2² +² subject to: x² + xy + y² = 3 L(x, y, A) = (x² + y²) + (x² + xy + y² − 3) Ə :((x² + y²) + λ (x² + xy + y² − 3)) = A (2x+y)+2x ?х : ((x² + y²) + λ (x² + xy + y² − 3)) = A (x + 2y) + 2y · ((x² + y²) + λ (x² + xy + y² − 3)) = x² + xy + −3 远古西征 |||||| = 0 A (2x+y)+2x = 0 X(x+2y)+2y=0 [x² + xy + y² − 3=0 The system has the following real solutions: (x, y, X) = (-1,-1, -2/3), (x, y, A) = (1, 1, -2/3), (x, y, X) = (-√3, √3, -2) (x, y, X) = (√³3, -√3, -2)
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,