Matrix multiplication plays an important role in a number of applications. Two matrices can only be multiplied if the number of columns of the fi rst matrix is equal to the number of rows in the second.Let’s assume we have an m × n matrix A and we want to multiply it by an n × p matrix B. We can express their product as an m × p matrix denoted by AB (or A ⋅ B). If we assign C = AB, and ci,j denotes the entry in C at position (i, j), then for each element i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ p. Now we want to see if we can parallelize the computation of C. Assume that matrices are laid out in memory sequentially as follows: a1,1, a2,1, a3,1, a4,1, ..., etc.Assume that we are going to compute C on both a single core shared memory machine and a 4-core shared-memory machine. Compute the speedup we would expect to obtain on the 4-core machine, ignoring any memory issues.Repeat above Exercise, assuming that updates to C incur a cache miss due to false sharing when consecutive elements are in a row (i.e., index i) are updated. How would you fix the false sharing issue that can occur?

Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
icon
Related questions
Question

Matrix multiplication plays an important role in a number of applications. Two matrices can only be multiplied if the number of columns of the fi rst matrix is equal to the number of rows in the second.
Let’s assume we have an m × n matrix A and we want to multiply it by an n × p matrix B. We can express their product as an m × p matrix denoted by AB (or A ⋅ B). If we assign C = AB, and ci,j denotes the entry in C at position (i, j), then for each element i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ p. Now we want to see if we can parallelize the computation of C. Assume that matrices are laid out in memory sequentially as follows: a1,1, a2,1, a3,1, a4,1, ..., etc.

Assume that we are going to compute C on both a single core shared memory machine and a 4-core shared-memory machine. Compute the speedup we would expect to obtain on the 4-core machine, ignoring any memory issues.

Repeat above Exercise, assuming that updates to C incur a cache miss due to false sharing when consecutive elements are in a row (i.e., index i) are updated.
How would you fix the false sharing issue that can occur?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY