Mathematical model: Indexes i = 1, 2, 3, 4 (products, respectively) Decision variables x: The number of ith product to be produced s: The demand for ith product which is not met Model Max z = 30x₂ + 40x2 + 20x3 + 10x4 - (15s₁ +20s2 + 10s3 +854) St, 0,30x₁ +0,30x₂ +0,25x3 +0,15x4 ≤ 1000 0,25x₁ +0,35x2 + 0,30x3 + 0,10x4 ≤ 800 0,45x₁ +0, 50x2 +0,40x3 +0,22x4≤ 1200 0,15x₁ +0,15x₂ + 0,10x3 + 0,05x4≤ 1080 X₁ + S₁ = 800 X₂ + $₂ = 750 x3 + S₂ = 600 X4+S4= 500 X,

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

COULD YOU SOLVE IT WITH EXCEL SOLVER. I NEED EXCEL SOLVER SOLUTION AND ALSO COULD YOU UPLOAD ANSWER WITH EXCEL SOLVER PHOTOS.

 

please do not provide solution in image format thank you!

A clothing company manufactures coats, pants, gloves, and hats for the winter season. All
products are manufactured in four different departments: cutting, insulating, sewing, and
packaging. According to firm orders, the contract stipulates a penalty for undelivered items.
Considering the data in the table, formulate the problem to obtain an optimal production plan.
Food
Cutting
Insulating
Sewing
Packaging
Demand (units)
Unit profit ($)
Unit penalty ($)
Coats
(hr/unit)
0,30
0,25
0,45
0,15
800
30
15
Pants
(hr/unit)
0,30
0,35
0,50
0,15
750
40
20
Gloves
(hr/unit)
0,25
0,30
0,40
0,10
600
20
10
Hats
(hr/unit)
0,15
0,10
0,22
0,05
500
10
Mathematical model:
Indexes
i = 1, 2, 3, 4 (products, respectively)
Decision variables
x: The number of ith product to be produced
st: The demand for ith product which is not met
Model
Max z = 30x₁ + 40x2 + 20x3 + 10x4 (15s₁ +20s2 + 1053 +854)
St, 0,30x, +0,30x2 +0,25x3 + 0,15x4≤ 1000
0,25x₁ +0,35x2 + 0,30x3 + 0,10x4 ≤ 800
0,45x₁ + 0,50x2 +0,40x3 + 0,22x4≤ 1200
0,15x₁ +0,15x₂ + 0,10x3 + 0,05x4 S 1080
X₂ + $₂ = 750
X₁ + S₁ = 800
X3 + S3 = 600
X4+S4= 500
X, 20
Capacity (hr)
1000
800
1200
1080
Transcribed Image Text:A clothing company manufactures coats, pants, gloves, and hats for the winter season. All products are manufactured in four different departments: cutting, insulating, sewing, and packaging. According to firm orders, the contract stipulates a penalty for undelivered items. Considering the data in the table, formulate the problem to obtain an optimal production plan. Food Cutting Insulating Sewing Packaging Demand (units) Unit profit ($) Unit penalty ($) Coats (hr/unit) 0,30 0,25 0,45 0,15 800 30 15 Pants (hr/unit) 0,30 0,35 0,50 0,15 750 40 20 Gloves (hr/unit) 0,25 0,30 0,40 0,10 600 20 10 Hats (hr/unit) 0,15 0,10 0,22 0,05 500 10 Mathematical model: Indexes i = 1, 2, 3, 4 (products, respectively) Decision variables x: The number of ith product to be produced st: The demand for ith product which is not met Model Max z = 30x₁ + 40x2 + 20x3 + 10x4 (15s₁ +20s2 + 1053 +854) St, 0,30x, +0,30x2 +0,25x3 + 0,15x4≤ 1000 0,25x₁ +0,35x2 + 0,30x3 + 0,10x4 ≤ 800 0,45x₁ + 0,50x2 +0,40x3 + 0,22x4≤ 1200 0,15x₁ +0,15x₂ + 0,10x3 + 0,05x4 S 1080 X₂ + $₂ = 750 X₁ + S₁ = 800 X3 + S3 = 600 X4+S4= 500 X, 20 Capacity (hr) 1000 800 1200 1080
Expert Solution
steps

Step by step

Solved in 5 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,