Match the graphs with their parametric equations. I O (a) x=4-t+2, y = ² O (b)x= 2 - 3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+1² cos (2 t) 4+1² O (f) III x = O (a) x = 4-t+2, y = ² (b)x= t² - 3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (f) y = O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+12 cos (2 t) 4+1² x = y = II O K (a) x = 4-t+2, y = ² O (b)x= ²-3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+1² cos (2 t) 4+1² O (f) IV x = O (f) 1 O (a) x = 4-t+2, y = ² O (b)x=²-3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) y = O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+12 cos (2 t) 4+1² x= y =
Match the graphs with their parametric equations. I O (a) x=4-t+2, y = ² O (b)x= 2 - 3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+1² cos (2 t) 4+1² O (f) III x = O (a) x = 4-t+2, y = ² (b)x= t² - 3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (f) y = O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+12 cos (2 t) 4+1² x = y = II O K (a) x = 4-t+2, y = ² O (b)x= ²-3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+1² cos (2 t) 4+1² O (f) IV x = O (f) 1 O (a) x = 4-t+2, y = ² O (b)x=²-3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) y = O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+12 cos (2 t) 4+1² x= y =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Match the graphs with their parametric equations.
I
O (a) x =
-t+2, y = ²
O (b) x = t² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+12
cos (2 t)
4+1²
O (f)
III
I=
O (a) x = 4-t+2, y = ²
O (b)x= ² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = ² + cos(3t)
cos (2 t)
4+1²
sin (2 t)
4+1²
y =
O (f)
x =
II
X
O (a) x = t4-t+2, y = 1²
O (b)x= ²3t, y = √t
O (c) x = sin(2t), y = sin(t+ sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+12:
cos (2 t)
4+t²
O (f)
IV
x =
O (a) x = 4-t + 2, y = ²
O (b)x= t² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (f)
y =
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+1²
cos (2 t)
4+t²
x =
y =](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb4b213bd-3ec1-4acd-bb80-5fbddcaac1ab%2F4cb77415-666d-412e-adf6-2654d9bdd511%2Fbyce0z_processed.png&w=3840&q=75)
Transcribed Image Text:Match the graphs with their parametric equations.
I
O (a) x =
-t+2, y = ²
O (b) x = t² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+12
cos (2 t)
4+1²
O (f)
III
I=
O (a) x = 4-t+2, y = ²
O (b)x= ² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = ² + cos(3t)
cos (2 t)
4+1²
sin (2 t)
4+1²
y =
O (f)
x =
II
X
O (a) x = t4-t+2, y = 1²
O (b)x= ²3t, y = √t
O (c) x = sin(2t), y = sin(t+ sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+12:
cos (2 t)
4+t²
O (f)
IV
x =
O (a) x = 4-t + 2, y = ²
O (b)x= t² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (f)
y =
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+1²
cos (2 t)
4+t²
x =
y =
![O (a) x = -t+2, y = t²
O (b)x= ² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x =
O (f)
x =
t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+1²
cos (2 t)
4+1²
y =
VI
XXXXX
O (a) x = t-t+2, y = t²
O (b) x = t² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+1²
O (f)
x =
y =
cos (2 t)
4+1²](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb4b213bd-3ec1-4acd-bb80-5fbddcaac1ab%2F4cb77415-666d-412e-adf6-2654d9bdd511%2Fq6ox15d_processed.png&w=3840&q=75)
Transcribed Image Text:O (a) x = -t+2, y = t²
O (b)x= ² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x =
O (f)
x =
t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+1²
cos (2 t)
4+1²
y =
VI
XXXXX
O (a) x = t-t+2, y = t²
O (b) x = t² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+1²
O (f)
x =
y =
cos (2 t)
4+1²
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Graph of part-(a)
Step by step
Solved in 8 steps with 6 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)