Match the graphs with their parametric equations. I O (a) x=4-t+2, y = ² O (b)x= 2 - 3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+1² cos (2 t) 4+1² O (f) III x = O (a) x = 4-t+2, y = ² (b)x= t² - 3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (f) y = O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+12 cos (2 t) 4+1² x = y = II O K (a) x = 4-t+2, y = ² O (b)x= ²-3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+1² cos (2 t) 4+1² O (f) IV x = O (f) 1 O (a) x = 4-t+2, y = ² O (b)x=²-3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) y = O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+12 cos (2 t) 4+1² x= y =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Match the graphs with their parametric equations.
I
O (a) x =
-t+2, y = ²
O (b) x = t² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+12
cos (2 t)
4+1²
O (f)
III
I=
O (a) x = 4-t+2, y = ²
O (b)x= ² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = ² + cos(3t)
cos (2 t)
4+1²
sin (2 t)
4+1²
y =
O (f)
x =
II
X
O (a) x = t4-t+2, y = 1²
O (b)x= ²3t, y = √t
O (c) x = sin(2t), y = sin(t+ sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+12:
cos (2 t)
4+t²
O (f)
IV
x =
O (a) x = 4-t + 2, y = ²
O (b)x= t² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (f)
y =
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+1²
cos (2 t)
4+t²
x =
y =
Transcribed Image Text:Match the graphs with their parametric equations. I O (a) x = -t+2, y = ² O (b) x = t² - 3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+12 cos (2 t) 4+1² O (f) III I= O (a) x = 4-t+2, y = ² O (b)x= ² - 3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (e) x = t + sin(4t), y = ² + cos(3t) cos (2 t) 4+1² sin (2 t) 4+1² y = O (f) x = II X O (a) x = t4-t+2, y = 1² O (b)x= ²3t, y = √t O (c) x = sin(2t), y = sin(t+ sin(2t)) O (d) x = cos(5t), y = sin(2t) O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+12: cos (2 t) 4+t² O (f) IV x = O (a) x = 4-t + 2, y = ² O (b)x= t² - 3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (f) y = O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+1² cos (2 t) 4+t² x = y =
O (a) x = -t+2, y = t²
O (b)x= ² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x =
O (f)
x =
t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+1²
cos (2 t)
4+1²
y =
VI
XXXXX
O (a) x = t-t+2, y = t²
O (b) x = t² - 3t, y = √t
O (c) x = sin(2t), y = sin(t + sin(2t))
O (d) x = cos(5t), y = sin(2t)
O (e) x = t + sin(4t), y = t² + cos(3t)
sin (2 t)
4+1²
O (f)
x =
y =
cos (2 t)
4+1²
Transcribed Image Text:O (a) x = -t+2, y = t² O (b)x= ² - 3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (e) x = O (f) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+1² cos (2 t) 4+1² y = VI XXXXX O (a) x = t-t+2, y = t² O (b) x = t² - 3t, y = √t O (c) x = sin(2t), y = sin(t + sin(2t)) O (d) x = cos(5t), y = sin(2t) O (e) x = t + sin(4t), y = t² + cos(3t) sin (2 t) 4+1² O (f) x = y = cos (2 t) 4+1²
Expert Solution
Step 1: Graph of part-(a)

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 8 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,