Match each general antiderivative with its rule xn+1 а. dx n + 1 dx, n + 1 b. (п + 1)2^+1 С. dx In(a) 2 dx d. x2 e. e* dx f. In|c| g. 0 h. a" In(a) a*+1 i. x +1 j. kx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

help

**Match each general antiderivative with its rule**

1. \(\int k \, dx\)
2. \(\int x^n \, dx, \, n \neq -1\)
3. \(\int a^x \, dx\)
4. \(\int \frac{1}{x} \, dx\)
5. \(\int e^x \, dx\)

**Options:**

a. \(\frac{x^{n+1}}{n+1}\)

b. \((n+1)x^{n+1}\)

c. \(\frac{a^x}{\ln(a)}\)

d. \(-\frac{2}{x^2}\)

e. \(e^x\)

f. \(\ln|x|\)

g. \(0\)

h. \(a^x \ln(a)\)

i. \(\frac{a^{x+1}}{x+1}\)

j. \(kx\)
Transcribed Image Text:**Match each general antiderivative with its rule** 1. \(\int k \, dx\) 2. \(\int x^n \, dx, \, n \neq -1\) 3. \(\int a^x \, dx\) 4. \(\int \frac{1}{x} \, dx\) 5. \(\int e^x \, dx\) **Options:** a. \(\frac{x^{n+1}}{n+1}\) b. \((n+1)x^{n+1}\) c. \(\frac{a^x}{\ln(a)}\) d. \(-\frac{2}{x^2}\) e. \(e^x\) f. \(\ln|x|\) g. \(0\) h. \(a^x \ln(a)\) i. \(\frac{a^{x+1}}{x+1}\) j. \(kx\)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning