Mass Hanger A group of students must study the oscillatory motion of a pendulum. One end of a light string is attached to the ceiling, and the other end of the string is attached to a mass hanger so that small disks of various masses may be stacked on the hanger, as shown in the figure The students want to determine how the length of the pendulum affects the period of the pendulum. Which of the following procedures should the students use to conduct the experiment? Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above its lowest point. Release the system from rest. Use a stopwatch to determine how long it takes the system to make ten oscillations. Repeat the experiment for different vertical heights. Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above its lowest point. Release the system from rest Use a stopwatch to determine how long it takes the system to make ten oscillations. Repeat the experiment for different string lengths. Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above i oscillations, Repeat the experiment for different vertical heights and string lengths. lowest point. Release the system from rest, Use a stopwatch to determine how long it takes the systern to make ten Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above its lowest point. Release the system from rest Use a stopwatch to determine how long it takes the system to make ten oscillations. Repeat the experiment for different string lengths and number of disks attached to the hanger,

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

Two multiple-choice questions attached as images pls help!

Mass
Hanger
A group of students must study the oscillatory motion of a pendulum. One end of a light string is attached to the ceiling, and the other end of the string is attached to a mass hanger so that small disks of various masses may be stacked on the hanger, as shown in the figure.
The students want to determine how the length of the pendulum affects the period of the pendulum. Which of the following procedures should the students use to conduct the experiment?
Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above its lowest point. Release the system from rest. Use a stopwatch to determine how long it takes the system to make ten
oscillations. Repeat the experiment for different vertical heights.
A
Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above its lowest point. Release the system from rest. Use a stopwatch to determine how long it takes the system to make ten
B
oscillations. Repeat the experiment for different string lengths.
Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above its lowest point. Release the system from rest. Use a stopwatch to determine how long it takes the system to make ten
oscillations. Repeat the experiment for different vertical heights and string lengths.
Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above its lowest point. Release the system from rest. Use a stopwatch to determine how long it takes the system to make ten
oscillations. Repeat the experiment for different string lengths and number of disks attached to the hanger.
1:35 PM
C.
Transcribed Image Text:Mass Hanger A group of students must study the oscillatory motion of a pendulum. One end of a light string is attached to the ceiling, and the other end of the string is attached to a mass hanger so that small disks of various masses may be stacked on the hanger, as shown in the figure. The students want to determine how the length of the pendulum affects the period of the pendulum. Which of the following procedures should the students use to conduct the experiment? Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above its lowest point. Release the system from rest. Use a stopwatch to determine how long it takes the system to make ten oscillations. Repeat the experiment for different vertical heights. A Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above its lowest point. Release the system from rest. Use a stopwatch to determine how long it takes the system to make ten B oscillations. Repeat the experiment for different string lengths. Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above its lowest point. Release the system from rest. Use a stopwatch to determine how long it takes the system to make ten oscillations. Repeat the experiment for different vertical heights and string lengths. Measure the length of the string with a meterstick. Place two disks on the hanger. Raise the hanger-disk system to a vertical position above its lowest point. Release the system from rest. Use a stopwatch to determine how long it takes the system to make ten oscillations. Repeat the experiment for different string lengths and number of disks attached to the hanger. 1:35 PM C.
ZM
Experiment 2
2L
OM
Experiment 3
Three different experiments are conducted that pertain to the oscillatory motion of a pendulum. For each experiment, the length of the pendulum and the mass of the pendulum are indicated. In all experiments, the pendulum is released from
vertical.
The pendulum in Experiment 2 is released from rest at an angle of 0, with respect to the vertical. What is the magnitude of the change in kinetic energy of the pendulum from its lowest point to the highest point along its arc?
A
Zero
B
2M9L
C
2MGL cos 0
2Mg (L-Lcos 8)
D
|
Transcribed Image Text:ZM Experiment 2 2L OM Experiment 3 Three different experiments are conducted that pertain to the oscillatory motion of a pendulum. For each experiment, the length of the pendulum and the mass of the pendulum are indicated. In all experiments, the pendulum is released from vertical. The pendulum in Experiment 2 is released from rest at an angle of 0, with respect to the vertical. What is the magnitude of the change in kinetic energy of the pendulum from its lowest point to the highest point along its arc? A Zero B 2M9L C 2MGL cos 0 2Mg (L-Lcos 8) D |
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Lens
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON