Mark all statements that are correct (there might be more than one statement that is correct). 0 b f³fz fº f> f then f is Riemann integrable over [a,b]. Let f:[a, b] →R be bounded. If Let f:[0,1] → R be given by f(x) = x. For every ɛ>0 there is a partition P ={ Σ(M,(f) – m, (f) ) A x,<ɛ. j=1 0 = 1 The function f:[0,1]→R be given by f(x) = X if x=0 if 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please pick the correct options. Thanks

 

### Educational Website Transcription: Understanding Riemann Integrability

**Instructions:** Review the statements below and identify any that are correct. Note that more than one statement may be correct.

1. **Statement 1**  
   Let \( f:[a,b] \rightarrow \mathbb{R} \) be a bounded function. If
   \[
   \int_a^b \overline{f} \geq \int_a^b \underline{f}
   \]
   then \( f \) is Riemann integrable over \([a,b]\).

2. **Statement 2**  
   Let \( f:[0,1] \rightarrow \mathbb{R} \) be given by \( f(x) = x \). For every \( \varepsilon > 0 \), there exists a partition \( P = \{ x_0, x_1, \ldots, x_n \} \) of \([0,1]\), such that
   \[
   \sum_{j=1}^{n} \left( M_j(f) - m_j(f) \right) \Delta x_j < \varepsilon.
   \]

3. **Statement 3**  
   The function \( f:[0,1] \rightarrow \mathbb{R} \) is given by 
   \[
   f(x) = 
   \begin{cases} 
   0 & \text{if } x = 0 \\ 
   \frac{1}{x} & \text{if } 0 < x \leq 1 
   \end{cases}
   \]
   is Riemann integrable.

4. **Statement 4**  
   Let \( P \) be a partition of \([a,b]\) and \( Q = P \cup \{c\} \), where \( c \in [a,b] \), \( c \notin P \). Then \( L(f, Q) \leq L(f, P) \) and \( U(f, P) \geq U(f, Q) \).

5. **Statement 5**  
   Let \( P, Q \) be partitions of \([a,b]\) and \( f:[a,b] \rightarrow \mathbb{R} \) be bounded. Then \( U(f, P) \leq L(f,
Transcribed Image Text:### Educational Website Transcription: Understanding Riemann Integrability **Instructions:** Review the statements below and identify any that are correct. Note that more than one statement may be correct. 1. **Statement 1** Let \( f:[a,b] \rightarrow \mathbb{R} \) be a bounded function. If \[ \int_a^b \overline{f} \geq \int_a^b \underline{f} \] then \( f \) is Riemann integrable over \([a,b]\). 2. **Statement 2** Let \( f:[0,1] \rightarrow \mathbb{R} \) be given by \( f(x) = x \). For every \( \varepsilon > 0 \), there exists a partition \( P = \{ x_0, x_1, \ldots, x_n \} \) of \([0,1]\), such that \[ \sum_{j=1}^{n} \left( M_j(f) - m_j(f) \right) \Delta x_j < \varepsilon. \] 3. **Statement 3** The function \( f:[0,1] \rightarrow \mathbb{R} \) is given by \[ f(x) = \begin{cases} 0 & \text{if } x = 0 \\ \frac{1}{x} & \text{if } 0 < x \leq 1 \end{cases} \] is Riemann integrable. 4. **Statement 4** Let \( P \) be a partition of \([a,b]\) and \( Q = P \cup \{c\} \), where \( c \in [a,b] \), \( c \notin P \). Then \( L(f, Q) \leq L(f, P) \) and \( U(f, P) \geq U(f, Q) \). 5. **Statement 5** Let \( P, Q \) be partitions of \([a,b]\) and \( f:[a,b] \rightarrow \mathbb{R} \) be bounded. Then \( U(f, P) \leq L(f,
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,