make this code work able instruction are given in picture #include using namespace std; double lerpSingle(double a, double b, double t) { if (t <= 0.5) return a+(b-a)*t; else return b-(b-a)*(1.0-t); }   // This is for linear interpolation Vector3 lerp(Vector3 u, Vector3 v, double t) { return Vector3(lerpSingle(u.x, v.x, t), lerpSingle(u.y, v.y, t), lerpSingle(u.z, v.z, t)); }   // This is for identifying if 4 vectors are coplanar   bool coplanar(Vector3 p, Vector3 q, Vector3 r, Vector3 s) { Vector3 ab = Vector3(q.x-p.x, q.y-p.y, q.z-p.z); Vector3 bc = Vector3(r.x-q.x, r.y-q.y, r.z-q.z); Vector3 cd = Vector3(s.x-r.x, s.y-r.y, s.z-r.z); if (dot(cross(ab,bc), cd) == 0) { return true; } else { return false; } }   Below are the helper function I have used for your reference   double dot(Vector3 u, Vector3 v) { double product = 0; product = u.x*v.x + u.y*v.y + u.z*v.z; } Vector3 cross(Vector3 u, Vector3 v) { double x = u.y * v.z - u.z * v.y; double y = u.z * v.x - u.x * v.z; double z = u.x * v.y - u.y * v.x; return Vector3(x,y,z); }   I have used below helper class   #include #include using namespace std; class Vector3 { public: double x; double y; double z; Vector3(double _x, double _y, double _z) { x = _x; y = _y; z = _z; } Vector3 normalized() { double mag = magnitude(); if (mag != 0.) { x /= mag; y /= mag; z /= mag; } return Vector3(x,y,z); } double magnitude() { return abs(sqrt(pow(x, 2) + pow(y, 2) + pow(z, 2))); } };   //my main method   int main() { Vector3 p = Vector3(3, 2, -5); Vector3 q = Vector3(-1, 4, -3); Vector3 r = Vector3(-3, 8, -5); Vector3 s = Vector3(-3, 2, 1); bool test = coplanar(p,q,r,s); if (test) { cout << "yes"; } else { cout << "no"; } return 0; } Output: Question No 1: #include #include using namespace std;   class Vector3   {   //private:          public:         double x, y, z;         Vector3();         Vector3(double x, double y, double z);         double dot(Vector3 u, Vector3 v); //dot product         Vector3 cross(Vector3 u, Vector3 v); //cross product         Vector3 normalized(); //returns a vector pointing in the same direction with length 1         double magnitude(); //returns the length of the vector         Vector3 operator+(Vector3 &u);         Vector3 operator-(Vector3 &v);         Vector3 operator*(double value);         double getX();         double getY();         double getZ();   };   Vector3::Vector3()   {         this->x = 0;         this->y = 0;         this->z = 0;   }   Vector3::Vector3(double x, double y, double z)   {         this->x = x;         this->y = y;         this->z = z;   }   Vector3 Vector3::normalized()   {         double mag = magnitude();         if (mag != 0)         {               x = x / mag;               y = y / mag;               z = z / mag;         }         return Vector3(x, y, z);   }   double Vector3::magnitude()   {         double magni = abs(sqrt(pow(x, 2) + pow(y, 2) + pow(z, 2)));         return magni;   }   double Vector3::dot(Vector3 u, Vector3 v)   {         double product = 0;         product = u.x*v.x + u.y*v.y + u.z*v.z;         return product;   }   Vector3 Vector3::cross(Vector3 u, Vector3 v)   {         double x = u.y * v.z - u.z * v.y;         double y = u.z * v.x - u.x * v.z;         double z = u.x * v.y - u.y * v.x;         return Vector3(x, y, z);   }   Vector3 Vector3::operator+(Vector3 &v)   {         double x = this->x + v.x;         double y = this->y + v.y;         double z = this->z + v.z;         return Vector3(x, y, z);   }   Vector3 Vector3::operator-(Vector3 &v)   {         double x = this->x - v.x;         double y = this->y - v.y;         double z = this->z - v.z;         return Vector3(x, y, z);   }   Vector3 Vector3::operator*(double value)   {         double x = this->x * value;         double y = this->y * value;         double z = this->z * value;         return Vector3(x, y, z);   }   double Vector3::getX()   {         return this->x;   }   double Vector3::getY()   {         return this->y;   }   double Vector3::getZ()   {         return this->z;   }   Vector3 getOriginalVector(Vector3 vertices[], int numVertices)   {         Vector3 vec(0, 0, 0);         Vector3 vect1, vect2, vect3;         for (int i = 0; i < numVertices-2; i++)         {               Vector3 v1 = vertices[i];               Vector3 v2 = vertices[(i + 1) % numVertices];               vect1 = (vertices[i + 1] - vertices[i]);               vect2 = (vertices[i + 2] - vertices[i + 1]);               vect3 = (vec.cross(vect1, vect2));               vec = vec + vect3;         }         vect1 = (vertices[numVertices - 1] - vertices[numVertices - 2]);         vect2 = (vertices[0] - vertices[numVertices - 1]);         vect3 = (vec.cross(vect1, vect2));         vec = vec + vect3;         return vec.normalized();   }   int main()   {         int const numVertices = 5;         Vector3 vertices[numVertices] = { Vector3(2.0, 0.0, 0.0), Vector3(2.0, 2.0, 0.0),                                             Vector3(1.0, 2.0, 0.0), Vector3(0.0, 2.0, 0.0),                                             Vector3(0.0, 0.0, 2.0) };         Vector3 n = getOriginalVector(vertices, numVertices);         cout << "originalVector = (" << n.getX() << ", " << n.getY() << ", " << n.getZ() << ")\n";                return 0;   }

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

make this code work able instruction are given in picture

#include<math.h>

using namespace std;

double lerpSingle(double a, double b, double t)

{

if (t <= 0.5)

return a+(b-a)*t;

else

return b-(b-a)*(1.0-t);

}

 

// This is for linear interpolation

Vector3 lerp(Vector3 u, Vector3 v, double t) {

return Vector3(lerpSingle(u.x, v.x, t), lerpSingle(u.y, v.y, t), lerpSingle(u.z, v.z, t));

}

 

// This is for identifying if 4 vectors are coplanar

 

bool coplanar(Vector3 p, Vector3 q, Vector3 r, Vector3 s) {

Vector3 ab = Vector3(q.x-p.x, q.y-p.y, q.z-p.z);

Vector3 bc = Vector3(r.x-q.x, r.y-q.y, r.z-q.z);

Vector3 cd = Vector3(s.x-r.x, s.y-r.y, s.z-r.z);

if (dot(cross(ab,bc), cd) == 0) {

return true;

} else {

return false;

}

}

 

Below are the helper function I have used for your reference

 

double dot(Vector3 u, Vector3 v) {

double product = 0;

product = u.x*v.x + u.y*v.y + u.z*v.z;

}

Vector3 cross(Vector3 u, Vector3 v) {

double x = u.y * v.z - u.z * v.y;

double y = u.z * v.x - u.x * v.z;

double z = u.x * v.y - u.y * v.x;

return Vector3(x,y,z);

}

 

I have used below helper class

 

#include <iostream>

#include <math.h>

using namespace std;

class Vector3 {

public:

double x;

double y;

double z;

Vector3(double _x, double _y, double _z) {

x = _x;

y = _y;

z = _z;

}

Vector3 normalized() {

double mag = magnitude();

if (mag != 0.) {

x /= mag;

y /= mag;

z /= mag;

}

return Vector3(x,y,z);

}

double magnitude() {

return abs(sqrt(pow(x, 2) + pow(y, 2) + pow(z, 2)));

}

};

 

//my main method

 

int main()

{

Vector3 p = Vector3(3, 2, -5);

Vector3 q = Vector3(-1, 4, -3);

Vector3 r = Vector3(-3, 8, -5);

Vector3 s = Vector3(-3, 2, 1);

bool test = coplanar(p,q,r,s);

if (test) {

cout << "yes";

} else {

cout << "no";

}

return 0;

}

Output:

Question No 1:

#include <iostream>

#include<math.h>

using namespace std;

 

class Vector3

 

{

 

//private:

 

    

 

public:

 

      double x, y, z;

 

      Vector3();

 

      Vector3(double x, double y, double z);

 

      double dot(Vector3 u, Vector3 v); //dot product

 

      Vector3 cross(Vector3 u, Vector3 v); //cross product

 

      Vector3 normalized(); //returns a vector pointing in the same direction with length 1

 

      double magnitude(); //returns the length of the vector

 

      Vector3 operator+(Vector3 &u);

 

      Vector3 operator-(Vector3 &v);

 

      Vector3 operator*(double value);

 

      double getX();

 

      double getY();

 

      double getZ();

 

};

 

Vector3::Vector3()

 

{

 

      this->x = 0;

 

      this->y = 0;

 

      this->z = 0;

 

}

 

Vector3::Vector3(double x, double y, double z)

 

{

 

      this->x = x;

 

      this->y = y;

 

      this->z = z;

 

}

 

Vector3 Vector3::normalized()

 

{

 

      double mag = magnitude();

 

      if (mag != 0)

 

      {

 

            x = x / mag;

 

            y = y / mag;

 

            z = z / mag;

 

      }

 

      return Vector3(x, y, z);

 

}

 

double Vector3::magnitude()

 

{

 

      double magni = abs(sqrt(pow(x, 2) + pow(y, 2) + pow(z, 2)));

 

      return magni;

 

}

 

double Vector3::dot(Vector3 u, Vector3 v)

 

{

 

      double product = 0;

 

      product = u.x*v.x + u.y*v.y + u.z*v.z;

 

      return product;

 

}

 

Vector3 Vector3::cross(Vector3 u, Vector3 v)

 

{

 

      double x = u.y * v.z - u.z * v.y;

 

      double y = u.z * v.x - u.x * v.z;

 

      double z = u.x * v.y - u.y * v.x;

 

      return Vector3(x, y, z);

 

}

 

Vector3 Vector3::operator+(Vector3 &v)

 

{

 

      double x = this->x + v.x;

 

      double y = this->y + v.y;

 

      double z = this->z + v.z;

 

      return Vector3(x, y, z);

 

}

 

Vector3 Vector3::operator-(Vector3 &v)

 

{

 

      double x = this->x - v.x;

 

      double y = this->y - v.y;

 

      double z = this->z - v.z;

 

      return Vector3(x, y, z);

 

}

 

Vector3 Vector3::operator*(double value)

 

{

 

      double x = this->x * value;

 

      double y = this->y * value;

 

      double z = this->z * value;

 

      return Vector3(x, y, z);

 

}

 

double Vector3::getX()

 

{

 

      return this->x;

 

}

 

double Vector3::getY()

 

{

 

      return this->y;

 

}

 

double Vector3::getZ()

 

{

 

      return this->z;

 

}

 

Vector3 getOriginalVector(Vector3 vertices[], int numVertices)

 

{

 

      Vector3 vec(0, 0, 0);

 

      Vector3 vect1, vect2, vect3;

 

      for (int i = 0; i < numVertices-2; i++)

 

      {

 

            Vector3 v1 = vertices[i];

 

            Vector3 v2 = vertices[(i + 1) % numVertices];

 

            vect1 = (vertices[i + 1] - vertices[i]);

 

            vect2 = (vertices[i + 2] - vertices[i + 1]);

 

            vect3 = (vec.cross(vect1, vect2));

 

            vec = vec + vect3;

 

      }

 

      vect1 = (vertices[numVertices - 1] - vertices[numVertices - 2]);

 

      vect2 = (vertices[0] - vertices[numVertices - 1]);

 

      vect3 = (vec.cross(vect1, vect2));

 

      vec = vec + vect3;

 

      return vec.normalized();

 

}

 

int main()

 

{

 

      int const numVertices = 5;

 

      Vector3 vertices[numVertices] = { Vector3(2.0, 0.0, 0.0), Vector3(2.0, 2.0, 0.0),

 

                                          Vector3(1.0, 2.0, 0.0), Vector3(0.0, 2.0, 0.0),

 

                                          Vector3(0.0, 0.0, 2.0) };

 

      Vector3 n = getOriginalVector(vertices, numVertices);

 

      cout << "originalVector = (" << n.getX() << ", " << n.getY() << ", " << n.getZ() << ")\n";

 

    

 

      return 0;

 

}

Time left 2:28:21
Consider a set of vectors, u, v, and uv, where uv represents the orthogonal projection of u on to v.
Write a function getOriginalVector) that takes as parameters the normalized form of u and the projection uv, and returns the original vector u.
Your function should have the following signature:
Vector3 getOriginalVector(Vector3 uNormalized, Vector3 uv)
You can assume that Vector3 is a class that represents a 3D vector, and exposes fields named x, y, and z.
You can assume that no inputs to the function will be vectors with a magnitude of 0, and that u and v will not point in the same direction.
You can assume the following functions related to vectors are available to you.
double Vector3.magnitude) usage example: double mag = myVector.magnitude);
double dot(Vector3 a, Vector3 b)
Vector3 cross(Vector3 a, Vector3 b)
You can assume that the following C++ mathematical functions are available to you, and that the trigonometric functions represent angles using
radians by default.
double sin(double angle)
double cos(double angle)
double tan(double angle)
double asin(double angle)
double acos(double angle)
double atan(double angle)
double sqrt(double angle)
For example:
Test
Result
Vector3 un = Vector3(0.8, 0.6, 0.0);
u = {4.00, 3.00, 0.00}
Vector3 uv = Vector3(4.0, 0.0, 0.0);
Vector3 u = getoriginalVector (un, uv);
printf("u = {%.21f, %.21f, %.21f}", u.x, u.y, u.z);
Answer: (penalty regime: 0 %)
Transcribed Image Text:Time left 2:28:21 Consider a set of vectors, u, v, and uv, where uv represents the orthogonal projection of u on to v. Write a function getOriginalVector) that takes as parameters the normalized form of u and the projection uv, and returns the original vector u. Your function should have the following signature: Vector3 getOriginalVector(Vector3 uNormalized, Vector3 uv) You can assume that Vector3 is a class that represents a 3D vector, and exposes fields named x, y, and z. You can assume that no inputs to the function will be vectors with a magnitude of 0, and that u and v will not point in the same direction. You can assume the following functions related to vectors are available to you. double Vector3.magnitude) usage example: double mag = myVector.magnitude); double dot(Vector3 a, Vector3 b) Vector3 cross(Vector3 a, Vector3 b) You can assume that the following C++ mathematical functions are available to you, and that the trigonometric functions represent angles using radians by default. double sin(double angle) double cos(double angle) double tan(double angle) double asin(double angle) double acos(double angle) double atan(double angle) double sqrt(double angle) For example: Test Result Vector3 un = Vector3(0.8, 0.6, 0.0); u = {4.00, 3.00, 0.00} Vector3 uv = Vector3(4.0, 0.0, 0.0); Vector3 u = getoriginalVector (un, uv); printf("u = {%.21f, %.21f, %.21f}", u.x, u.y, u.z); Answer: (penalty regime: 0 %)
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Returning value from Function
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education