Make an appropriate u-substitution, and then use the Integral Table to evaluate the integral. (b) If you have a CAS, use it to evaluate the integral (no substitution) and then confirm that the result is equivalent to that in part (a). Given: ∫ x ln(2 + x2)dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question

(a) Make an appropriate u-substitution, and then use the
Integral Table to evaluate the integral. (b) If you have
a CAS, use it to evaluate the integral (no substitution) and then
confirm that the result is equivalent to that in part (a).

Given:

∫ x ln(2 + x2)dx

PRODUCTS OF TRIGONOMETRIC FUNCTIONS
sin(m + n)u
sin(m – n)u
+C
2(m – n)
cos(m - п)и
+C
cos(m + n)u
38.
sin mu sin nu du
40.
sin mu cos nu du
2(m + n)
2(m + n)
-u cos"+!
2(m – n)
sin(m +n)u , sin(m – n)u
+C
39. cos mu cos nu du:
| sin" u cos" u du
sin
m -1
- | sin"-² u cos" u du
41.
2(m + n)
2(т — п)
m + n
m +n
+! u cos"-! u
n-1
- sin" u cos"-² u du
m +n
m +n
PRODUCTS OF TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS
42. " sin bu du :
a² + b²
(a sin bu – b cos bu) + C
43.
a" cos bu du =
a² + b²
(a cos bu + b sin bu) + C
POWERS OF u MULTIPLYING OR DIVIDING BASIC FUNCTIONS
51. ue" du = e" (u – 1) + C
Swe du =we
53. fu'a" du =
44. u sin u du = sin u – u cos u +C
Suco
u cos u du = cos u +u sin u + C
45.
52.
u"a"
|u° sin u du = 2u sin u + (2 – u²) cos u + C
u"-'a" du + C
In a
46.
In a
47.
u cos u du = 2u cos u + (u² – 2) sin u +C
e du
e du
54.
(n – 1)u“-1
n -
a" du
In a
a" du
* / u' cos u du
a"
is
n-1
48.
u" sin u du = -u" cos u + n
55.
(n – 1)un-I
du
In |In u| +C
u"
u" cos u du = u" sin u – n | u"-1 sin u du
56.u In u
49.
50. fu" lau
«" In u du
(n + 1)z [(n + 1) In u – 1] + C
POLYNOMIALS MULTIPLYING BASIC FUNCTIONS
57.
du
P'(u)e
[signs alternate: + - + -..]
|p(u) sin au du = -- p(u) cos au +p'(u) sinau +
| P(u) cos au du = - p(u) sin au + p'(u) cos au -
P" (u) cos au
[signs alternate in pairs after first term: ++-- ++--...]
58.
P"(u) sin au –
[signs alternate in pairs: ++ -- ++--..]
59.
Transcribed Image Text:PRODUCTS OF TRIGONOMETRIC FUNCTIONS sin(m + n)u sin(m – n)u +C 2(m – n) cos(m - п)и +C cos(m + n)u 38. sin mu sin nu du 40. sin mu cos nu du 2(m + n) 2(m + n) -u cos"+! 2(m – n) sin(m +n)u , sin(m – n)u +C 39. cos mu cos nu du: | sin" u cos" u du sin m -1 - | sin"-² u cos" u du 41. 2(m + n) 2(т — п) m + n m +n +! u cos"-! u n-1 - sin" u cos"-² u du m +n m +n PRODUCTS OF TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS 42. " sin bu du : a² + b² (a sin bu – b cos bu) + C 43. a" cos bu du = a² + b² (a cos bu + b sin bu) + C POWERS OF u MULTIPLYING OR DIVIDING BASIC FUNCTIONS 51. ue" du = e" (u – 1) + C Swe du =we 53. fu'a" du = 44. u sin u du = sin u – u cos u +C Suco u cos u du = cos u +u sin u + C 45. 52. u"a" |u° sin u du = 2u sin u + (2 – u²) cos u + C u"-'a" du + C In a 46. In a 47. u cos u du = 2u cos u + (u² – 2) sin u +C e du e du 54. (n – 1)u“-1 n - a" du In a a" du * / u' cos u du a" is n-1 48. u" sin u du = -u" cos u + n 55. (n – 1)un-I du In |In u| +C u" u" cos u du = u" sin u – n | u"-1 sin u du 56.u In u 49. 50. fu" lau «" In u du (n + 1)z [(n + 1) In u – 1] + C POLYNOMIALS MULTIPLYING BASIC FUNCTIONS 57. du P'(u)e [signs alternate: + - + -..] |p(u) sin au du = -- p(u) cos au +p'(u) sinau + | P(u) cos au du = - p(u) sin au + p'(u) cos au - P" (u) cos au [signs alternate in pairs after first term: ++-- ++--...] 58. P"(u) sin au – [signs alternate in pairs: ++ -- ++--..] 59.
TABLE OF INTEGRALS
BASIC FUNCTIONS
Sa" du = na
1.
du =
n+ 1
10.
+C
du
|" = In lu| +C
In u du %3D u In u —и+С
2.
11.
|" du – " +C
12. cot u du = In |sin u| + C
3.
| sec u du = In |sec u + tan u| + C
= In (tan (7 + ju) | +c
4.
sin u du = - cos u + C
13.
5.
cos u du = sin u +C
| csc u du = In |csc u – cot u| +C
= In |tan {u| + C
14.
6.
tan u du = In |sec u|+C
lu = u sin=' u + V1 – u² +C
cot-' u du = u cot-' u + In ī+u² +C_
15.
cos- u du = u cos¯-lu – V1 - u² +C
sec-" u du = u sec-u – In \u + vu² – 1| +C
8.
16.
tanu du = u tan-u – In V1 + u² + C
- | csc-" u du = u csc-" u + In [u + /u? – 1+C
17.
9.
RECIPROCALS OF BASIC FUNCTIONS
18.
du = tan u F sec u +C
22.
du = }(u # In [sin u ± cos u|) + C
1± sinu
1t cot u
19.
du = - cot u ± csc u + C
23.
du = u + cot u F csc u + C
1t cos u
1t sec u
20. Tt tan u
du = }(u± In |cos u± sin u|) + C
24. It csc u
du = u – tan u ± sec u + C
21.
du = In [tan u| + C
du = u – In(1 ± e") + C
25.
sin u cos u
POWERS OF TRIGONOMETRIC FUNCTIONS
· | sin² u du = }u – } sin 2u + C
| cot? u du = - cot u – u + C
26.
32.
27. | cos² u du = ļu + į sin 2u + C
33. |
sec²
= tan u + C
28. | tan? u du = tan u – u +C
34. csc² u du = – cot u + C
1
sin" u du = -- sin"
u cos u + "=' | sin"-2 u du
cot" u du :
cot"-1
: / cor"-2,
29.
35.
и du
n- 1
30. f
n -
u sin u +
cos"-2 u du
п — 2
i/ sec"-2
cos" u du = - cos"
36.
sec" u du =
sec"-2 u tan u +
и du
n- 1
n - 2
tan" u du =
| csc" u du
csc"-2 u cot u +
| csc"-2 u du
31.
tan"
и du
37.
tan
n- 1
n-1
n- 1
Transcribed Image Text:TABLE OF INTEGRALS BASIC FUNCTIONS Sa" du = na 1. du = n+ 1 10. +C du |" = In lu| +C In u du %3D u In u —и+С 2. 11. |" du – " +C 12. cot u du = In |sin u| + C 3. | sec u du = In |sec u + tan u| + C = In (tan (7 + ju) | +c 4. sin u du = - cos u + C 13. 5. cos u du = sin u +C | csc u du = In |csc u – cot u| +C = In |tan {u| + C 14. 6. tan u du = In |sec u|+C lu = u sin=' u + V1 – u² +C cot-' u du = u cot-' u + In ī+u² +C_ 15. cos- u du = u cos¯-lu – V1 - u² +C sec-" u du = u sec-u – In \u + vu² – 1| +C 8. 16. tanu du = u tan-u – In V1 + u² + C - | csc-" u du = u csc-" u + In [u + /u? – 1+C 17. 9. RECIPROCALS OF BASIC FUNCTIONS 18. du = tan u F sec u +C 22. du = }(u # In [sin u ± cos u|) + C 1± sinu 1t cot u 19. du = - cot u ± csc u + C 23. du = u + cot u F csc u + C 1t cos u 1t sec u 20. Tt tan u du = }(u± In |cos u± sin u|) + C 24. It csc u du = u – tan u ± sec u + C 21. du = In [tan u| + C du = u – In(1 ± e") + C 25. sin u cos u POWERS OF TRIGONOMETRIC FUNCTIONS · | sin² u du = }u – } sin 2u + C | cot? u du = - cot u – u + C 26. 32. 27. | cos² u du = ļu + į sin 2u + C 33. | sec² = tan u + C 28. | tan? u du = tan u – u +C 34. csc² u du = – cot u + C 1 sin" u du = -- sin" u cos u + "=' | sin"-2 u du cot" u du : cot"-1 : / cor"-2, 29. 35. и du n- 1 30. f n - u sin u + cos"-2 u du п — 2 i/ sec"-2 cos" u du = - cos" 36. sec" u du = sec"-2 u tan u + и du n- 1 n - 2 tan" u du = | csc" u du csc"-2 u cot u + | csc"-2 u du 31. tan" и du 37. tan n- 1 n-1 n- 1
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning