Low Birth Weight The University of Maryland Medical Center considers “low birth weights” to be those that are less than 5.5 lb or 2495 g. Birth weights are normally distributed with a mean of 3152.0 g and a standard deviation of 693.4 g (based on Data Set 4 “Births” in Appendix B). a. If a birth weight is randomly selected, what is the probability that it is a “low birth weight”? b. Find the weights considered to be significantly low, using the criterion of a birth weight having a probability of 0.05 or less. c. Compare the results from parts (a) and (b).
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Low Birth Weight The University of Maryland Medical Center considers “low birth weights” to be those that are less than 5.5 lb or 2495 g. Birth weights are
a. If a birth weight is randomly selected, what is the
b. Find the weights considered to be significantly low, using the criterion of a birth weight having a probability of 0.05 or less.
c. Compare the results from parts (a) and (b).
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images