LO bisects NLM, LM = 26, NO = 8, and LN = 18. What is the value of x? L N X M

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question

LO bisects NLM, LM = 26, NO = 8, and LN = 18. What is the value of x?

A. x=84.5

B. x=58.5

C. x=11.6

D. x=5.5

## Problem Description:
Given a diagram of triangle \( \triangle NLM \), where the ray \( \overrightarrow{LO} \) bisects \( \angle NLM \), the values of the triangle sides are as follows:

- \( \overline{LM} = 26 \)
- \( \overline{NO} = 8 \)
- \( \overline{LN} = 18 \)

The problem is to find the value of \( x \).

## Diagram Explanation:
The diagram depicts a triangle \( \triangle NLM \) with the following points and sides:
- \( L \) is one vertex at the base.
- \( M \) is the other vertex at the base, forming side \( \overline{LM} \) with \( L \).
- \( N \) is the top vertex connected to both \( L \) and \( M \).
- A point \( O \) lies on side \( \overline{NM} \).
- The ray \( \overrightarrow{LO} \) bisects the angle \( \angle NLM \).
- \( x \) represents the segment \( \overline{OM} \).

## Solution:
Given the angle bisector property,

\[ \frac{\overline{LN}}{\overline{NM}} = \frac{\overline{LO}}{\overline{OM}} \]

Since we know:
- \( \overline{LN} = 18 \)
- \( \overline{LM} = 26 \)
- \( \overline{NO} = 8 \)
- Let \( \overline{OM} = x \).

The segment \( \overline{NM} \) can be partitioned as:
\[ \overline{NM} = \overline{NO} + \overline{OM} \]
\[ \overline{NM} = 8 + x \]

Using the angle bisector theorem:
\[ \frac{\overline{LN}}{\overline{NM}} = \frac{18}{8 + x} \]
According to the theorem:
\[ \frac{\overline{LN}}{\overline{NM}} = \frac{\overline{LM}}{\overline{OM}} \]
So,
\[ \frac{18}{8 + x} = \frac{26}{x} \]

Cross-multiplying to solve for \( x \):
\[
Transcribed Image Text:## Problem Description: Given a diagram of triangle \( \triangle NLM \), where the ray \( \overrightarrow{LO} \) bisects \( \angle NLM \), the values of the triangle sides are as follows: - \( \overline{LM} = 26 \) - \( \overline{NO} = 8 \) - \( \overline{LN} = 18 \) The problem is to find the value of \( x \). ## Diagram Explanation: The diagram depicts a triangle \( \triangle NLM \) with the following points and sides: - \( L \) is one vertex at the base. - \( M \) is the other vertex at the base, forming side \( \overline{LM} \) with \( L \). - \( N \) is the top vertex connected to both \( L \) and \( M \). - A point \( O \) lies on side \( \overline{NM} \). - The ray \( \overrightarrow{LO} \) bisects the angle \( \angle NLM \). - \( x \) represents the segment \( \overline{OM} \). ## Solution: Given the angle bisector property, \[ \frac{\overline{LN}}{\overline{NM}} = \frac{\overline{LO}}{\overline{OM}} \] Since we know: - \( \overline{LN} = 18 \) - \( \overline{LM} = 26 \) - \( \overline{NO} = 8 \) - Let \( \overline{OM} = x \). The segment \( \overline{NM} \) can be partitioned as: \[ \overline{NM} = \overline{NO} + \overline{OM} \] \[ \overline{NM} = 8 + x \] Using the angle bisector theorem: \[ \frac{\overline{LN}}{\overline{NM}} = \frac{18}{8 + x} \] According to the theorem: \[ \frac{\overline{LN}}{\overline{NM}} = \frac{\overline{LM}}{\overline{OM}} \] So, \[ \frac{18}{8 + x} = \frac{26}{x} \] Cross-multiplying to solve for \( x \): \[
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer