LMNP Is a quadrilateral Inscribed In a circle. If ml =m/N,Is MP a dlameter of a circle? Complete the explanation. (select) v.Since LMNP is a quadrilateral inscribed in a circle, the opposite angles of the quadrilateral are (select) supplementary angles, and must therefore be (select) v angles. Since L is a right angle, by the Inscribed Angle of a Diameter Theorem, MP (select) Since mzl = mZN and mzl +mZN = 180°, they are congruent and %3D v be a diameter of a circle.
LMNP Is a quadrilateral Inscribed In a circle. If ml =m/N,Is MP a dlameter of a circle? Complete the explanation. (select) v.Since LMNP is a quadrilateral inscribed in a circle, the opposite angles of the quadrilateral are (select) supplementary angles, and must therefore be (select) v angles. Since L is a right angle, by the Inscribed Angle of a Diameter Theorem, MP (select) Since mzl = mZN and mzl +mZN = 180°, they are congruent and %3D v be a diameter of a circle.
Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
Related questions
Question
![LMNP Is a quadrilateral Inscribed in a circle. If mL =mZN, Is MP a dlameter of a circle? Complete the
explanation.
M
(select) v Since LMNP is a quadrilateral inscribed in a circle, the opposite angles of the quadrilateral are
|(select)
supplementary angles, and must therefore be (select) v angles. Since ZL is a right angle, by the
Inscribed Angle of a Diameter Theorem, MP (select)
v. Since mzl = mZN and ml +mZN = 180°, they are congruent and
v be a diameter of a circle.
Type here to search
近](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F099a94f9-d37e-42f0-9b23-c14d2dfe7fd4%2F36ad97c0-9339-4844-926b-41d5f3b587a6%2Fucujrys_processed.jpeg&w=3840&q=75)
Transcribed Image Text:LMNP Is a quadrilateral Inscribed in a circle. If mL =mZN, Is MP a dlameter of a circle? Complete the
explanation.
M
(select) v Since LMNP is a quadrilateral inscribed in a circle, the opposite angles of the quadrilateral are
|(select)
supplementary angles, and must therefore be (select) v angles. Since ZL is a right angle, by the
Inscribed Angle of a Diameter Theorem, MP (select)
v. Since mzl = mZN and ml +mZN = 180°, they are congruent and
v be a diameter of a circle.
Type here to search
近
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elementary Geometry For College Students, 7e](https://www.bartleby.com/isbn_cover_images/9781337614085/9781337614085_smallCoverImage.jpg)
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
![Elementary Geometry for College Students](https://www.bartleby.com/isbn_cover_images/9781285195698/9781285195698_smallCoverImage.gif)
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning
![Elementary Geometry For College Students, 7e](https://www.bartleby.com/isbn_cover_images/9781337614085/9781337614085_smallCoverImage.jpg)
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
![Elementary Geometry for College Students](https://www.bartleby.com/isbn_cover_images/9781285195698/9781285195698_smallCoverImage.gif)
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning