Linear regression Number of obs 131 %3D F(11, 119) 143.13 Prob > F 0.0000 %3D R-squared 0.8941 %3D Root MSE .36402 Robust Intpes_pc Coef. Std. Err. P>|t| [95% Conf. Interval] Inypcpenn -.9599562 .4732335 -2.03 0.045 -1.897006 -.0229066 Inypcpenn2 .0954567 .0256192 3.73 0.000 .0447282 .1461852 In_gasprice -.2392021 .0566569 -4.22 0.000 -.3513885 -.1270157 temp_coldest -.01857 .005238 -3.55 0.001 -.0289417 -.0081983 temp_warmest .0166677 .016009 1.04 0.300 -.0150318 .0483671 In_annualprecip .006395 .0539954 0.12 0.906 -.1005213 .1133114 ffrents .0028204 .0028546 0.99 0.325 -.0028319 .0084728 Inpop -.0469675 .038338 -1.23 0.223 -.1228807 .0289456 Inland .0546541 .0328958 1.66 0.099 -.0104828 .119791 _Iincomegro_2 .1032733 .2283648 0.45 0.652 -.3489118 .5554584 _Iincomegro_3 -.0828519 .1007342 -0.82 0.412 -.2823156 .1166118 cons 8.303336 2.40965 3.45 0.001 3.531989 13.07468

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

Given that,

Log(total primary energy consumption per capita)= 8.303336 + -.95999562*log(GDP per capita USD) + .0954567*square of log(GDP per capita USD) + -0.2392021*log(pump price for gasoline USD litre) + -.01857(average temperature for the coldest month in a year (in C)) + .0546541*log(land area in km2).
 

 Questions

1)Describe if MLR 4 is likely to hold or not?

2) Describe if MLR 5 is likely to hold or not?

3)Interpret the coefficient on gas price and carry out a t test to determine the significance of the coefficient 

4)When is it better to use non linear models than linear models and what types of relationships are best modelled with this ? 

Linear regression
Number of obs
131
F(11, 119)
143.13
%3D
Prob > F
0.0000
%3D
R-squared
0.8941
%3D
Root MSE
.36402
%3D
Robust
Intpes_pc
Сoef.
Std. Err.
P>|t|
[95% Conf. Interval]
Inypcpenn
-.9599562
.4732335
-2.03
0.045
-1.897006
-.0229066
Inypcpenn2
.0954567
0256192
3.73
0.000
.0447282
.1461852
In_gasprice
-.2392021
.0566569
-4.22
0.000
-.3513885
-.1270157
temp_coldest
-.01857
.005238
-3.55
0.001
-.0289417
-.0081983
temp_warmest
.0166677
.016009
1.04
0.300
-.0150318
.0483671
In_annualprecip
.006395
0539954
0.12
0.906
-.1005213
.1133114
ffrents
0028204
.0028546
0.99
0.325
-.0028319
.0084728
Inpop
-.0469675
.038338
-1.23
0.223
-.1228807
.0289456
Inland
.0546541
.0328958
1.66
0.099
-.0104828
.119791
_Iincomegro_2
_Iincomegro_3
.1032733
.2283648
0.45
0.652
-.3489118
5554584
-.0828519
.1007342
-0.82
0.412
-.2823156
.1166118
_cons
8.303336
2.40965
3.45
0.001
3.531989
13.07468
Transcribed Image Text:Linear regression Number of obs 131 F(11, 119) 143.13 %3D Prob > F 0.0000 %3D R-squared 0.8941 %3D Root MSE .36402 %3D Robust Intpes_pc Сoef. Std. Err. P>|t| [95% Conf. Interval] Inypcpenn -.9599562 .4732335 -2.03 0.045 -1.897006 -.0229066 Inypcpenn2 .0954567 0256192 3.73 0.000 .0447282 .1461852 In_gasprice -.2392021 .0566569 -4.22 0.000 -.3513885 -.1270157 temp_coldest -.01857 .005238 -3.55 0.001 -.0289417 -.0081983 temp_warmest .0166677 .016009 1.04 0.300 -.0150318 .0483671 In_annualprecip .006395 0539954 0.12 0.906 -.1005213 .1133114 ffrents 0028204 .0028546 0.99 0.325 -.0028319 .0084728 Inpop -.0469675 .038338 -1.23 0.223 -.1228807 .0289456 Inland .0546541 .0328958 1.66 0.099 -.0104828 .119791 _Iincomegro_2 _Iincomegro_3 .1032733 .2283648 0.45 0.652 -.3489118 5554584 -.0828519 .1007342 -0.82 0.412 -.2823156 .1166118 _cons 8.303336 2.40965 3.45 0.001 3.531989 13.07468
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman