Linear Regression ID Verbal ✓ Model Builder Predictors Age Gender Dependent Variable Math Covariates Age Factors Gender Blocks Block 1 Gender Block 2 Age + Add New Block X X Model 1 2 Model Comparisons Comparison Model 1 R 0.0433 0.2275 Model -2 Omnibus ANOVA Test R² 0.00187 0.05178 Model Specific Results Model 2 Intercept Gender: Age AR² 0.0499 Gender Age Residuals Note. Type 3 sum of squares Sum of Squares Female - Male Model Coefficients - Math Predictor 365 3328 63242 F 0.0338 0.4641 -8.63 7.25 0.895 df 1 1 F 17 SE Estimate 399.95 146.17 27.54 7.67 Overall Model Test df1 df2 1 2 df1 1 Mean Square 365 3328 3720 t 18 17 -0.313 0.946 df2 17 F 0.0981 0.8947 P 2.736 0.014 0.758 0.357 Р 0.856 0.636 Р 0.357 Р 0.758 0.357 [3] Stand. Estimate -0.146 0.226

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

How does the association between age and math score change if gender is included in the analysis?

Data Analyses
daļ
ANOVA Regression
Exploration T-Tests
Linear Regression
ID
Verbal
✓ Model Builder
Predictors
Age
Gender
↑
88
Frequencies
Dependent Variable
Math
Covariates
Age
Factors
Gender
Blocks
Block 1
Factor
Gender
Block 2
Age
+ Add New Block
X
Model
1
2
jamovi - SAT FroDis
Model Comparisons
Comparison
Model
1
R
0.0433
0.2275
Model
2
Intercept
Gender:
Omnibus ANOVA Test
R²
0.00187
0.05178
Age
Model Specific Results Model 2
AR²
0.0499
365
Gender
Age
3328
Residuals
63242
Note. Type 3 sum of squares
Model Coefficients - Math
Predictor
Female - Male
Sum of Squares
Estimate
399.95
F
-8.63
7.25
0.0338
0.4641
F
0.895
df
1
1
17
SE
146.17
27.54
7.67
Overall Model Test
df2
df1
1
2
df1
1
Mean Square
365
3328
3720
t
2.736
-0.313
0.946
18
17
df2
17
F
0.0981
0.8947
Р
0.014
0.758
0.357
Р
0.856
0.636
Р
0.357
Р
0.758
0.357
[3]
Stand. Estimate
-0.146
0.226
Transcribed Image Text:Data Analyses daļ ANOVA Regression Exploration T-Tests Linear Regression ID Verbal ✓ Model Builder Predictors Age Gender ↑ 88 Frequencies Dependent Variable Math Covariates Age Factors Gender Blocks Block 1 Factor Gender Block 2 Age + Add New Block X Model 1 2 jamovi - SAT FroDis Model Comparisons Comparison Model 1 R 0.0433 0.2275 Model 2 Intercept Gender: Omnibus ANOVA Test R² 0.00187 0.05178 Age Model Specific Results Model 2 AR² 0.0499 365 Gender Age 3328 Residuals 63242 Note. Type 3 sum of squares Model Coefficients - Math Predictor Female - Male Sum of Squares Estimate 399.95 F -8.63 7.25 0.0338 0.4641 F 0.895 df 1 1 17 SE 146.17 27.54 7.67 Overall Model Test df2 df1 1 2 df1 1 Mean Square 365 3328 3720 t 2.736 -0.313 0.946 18 17 df2 17 F 0.0981 0.8947 Р 0.014 0.758 0.357 Р 0.856 0.636 Р 0.357 Р 0.758 0.357 [3] Stand. Estimate -0.146 0.226
Data
HO
Exploration T-Tests
> Model Builder
Analyses
Linear Regression
Fit Measures
R
R²
Adjusted R²
юн
88
ANOVA Regression Frequencies
> Reference Levels
> Assumption Checks
Model Fit
HOH
юч
Factors
Factor
Overall Model Test
F test
→→
jamovi - SAT FroDis
Linear Regression
Model Fit Measures
1
Model
R
R²
0.215 0.0463
Omnibus ANOVA Test
Sum of Squares
Age
3088
Residuals
63607
Note. Type 3 sum of squares
Model Coefficients - Math
Predictor Estimate
Intercept 402.04
Age
6.92
SE
142.31
df
F
0.874
1
18
t
Overall Model Test
df1
df2
1
Mean Square
3088
3534
2.825
7.40 0.935
Р
0.011
0.362
18
F
0.874
P
0.362
0.215
P
0.362
Stand. Estimate
[3]
Transcribed Image Text:Data HO Exploration T-Tests > Model Builder Analyses Linear Regression Fit Measures R R² Adjusted R² юн 88 ANOVA Regression Frequencies > Reference Levels > Assumption Checks Model Fit HOH юч Factors Factor Overall Model Test F test →→ jamovi - SAT FroDis Linear Regression Model Fit Measures 1 Model R R² 0.215 0.0463 Omnibus ANOVA Test Sum of Squares Age 3088 Residuals 63607 Note. Type 3 sum of squares Model Coefficients - Math Predictor Estimate Intercept 402.04 Age 6.92 SE 142.31 df F 0.874 1 18 t Overall Model Test df1 df2 1 Mean Square 3088 3534 2.825 7.40 0.935 Р 0.011 0.362 18 F 0.874 P 0.362 0.215 P 0.362 Stand. Estimate [3]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman