Linear Algebra

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Linear Algebra

What is the general real solution?
O A. Re(x(t)) = C₁
B. Re(x(t)) = C₁
O c. Re(x(t)) = C₁
- 3 cos 9t-9 sin 9t
2 sin 9t
D. Re(x(t)) = C₁1
- 3 cos 9t + 9 sin 9t
2 sin 9t
- 3 cos 9t - 9 sin 9t
2 cos 9t
- 3 cos 9t+ 9 sin 9t
+ C₂
2 cos 9t
+₂[
+ C2
- 3 sin 9t + 9 cos 9t
2 cos 9t
18 ] + ₂[
Describe the shapes of typical trajectories of Re(x(t)). Choose the correct answer below.
- 3 sin 9t-9 cos 9t
2 cos 9t
- 3 sin 9t + 9 cos 9t
2 sin 9t
- 3 sin 9t-9 cos 9t
2 sin 9t
The trajectories spiral inward toward the origin.
The trajectories form ellipses around the origin.
The trajectories spiral outward away from the origin.
Transcribed Image Text:What is the general real solution? O A. Re(x(t)) = C₁ B. Re(x(t)) = C₁ O c. Re(x(t)) = C₁ - 3 cos 9t-9 sin 9t 2 sin 9t D. Re(x(t)) = C₁1 - 3 cos 9t + 9 sin 9t 2 sin 9t - 3 cos 9t - 9 sin 9t 2 cos 9t - 3 cos 9t+ 9 sin 9t + C₂ 2 cos 9t +₂[ + C2 - 3 sin 9t + 9 cos 9t 2 cos 9t 18 ] + ₂[ Describe the shapes of typical trajectories of Re(x(t)). Choose the correct answer below. - 3 sin 9t-9 cos 9t 2 cos 9t - 3 sin 9t + 9 cos 9t 2 sin 9t - 3 sin 9t-9 cos 9t 2 sin 9t The trajectories spiral inward toward the origin. The trajectories form ellipses around the origin. The trajectories spiral outward away from the origin.
For matrix A below, construct the general solution of x' = Ax involving complex eigenfunctions and then obtain the general real solution. Describe the shapes of typical trajectories.
3
45
A-[-2-4)
=
3
What is the general solution involving complex eigenfunctions?
A. X(t) = C₁
B. X(t) = C₁
C. X(t) = C₁
O D. X(t) = C₁
- 3 - 9i
- 45
- 3+9i
2
- 3 - 9i
2
- 3+9i
- 45
e(9i)t
(9i)t + C₂
e(9i)t
+ C₂
e(9i)t
+ C₂
+ C2
- 3+9i
- 45
- 3-9i
2
- 3+9i
2
- 3-9i
- 45
(-9i)t
le(-9i)t
(-9i)t
- 9i)t
Transcribed Image Text:For matrix A below, construct the general solution of x' = Ax involving complex eigenfunctions and then obtain the general real solution. Describe the shapes of typical trajectories. 3 45 A-[-2-4) = 3 What is the general solution involving complex eigenfunctions? A. X(t) = C₁ B. X(t) = C₁ C. X(t) = C₁ O D. X(t) = C₁ - 3 - 9i - 45 - 3+9i 2 - 3 - 9i 2 - 3+9i - 45 e(9i)t (9i)t + C₂ e(9i)t + C₂ e(9i)t + C₂ + C2 - 3+9i - 45 - 3-9i 2 - 3+9i 2 - 3-9i - 45 (-9i)t le(-9i)t (-9i)t - 9i)t
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,