Limit Laws If L, M, c, and k are real numbers and limƒ(x)=L and limg(x)= M, then 1. Sum Rule 2. Difference Rule 3. Constant Multiple Rule lim(k-f(x)) =. 4. Product Rule lim(f(x) g(x)) = 5. Quotient Rule 6. Power Rule lim(ƒ(x)+g(x))=. lim(f(x)-g(x)) =. X-C X-C X-C X-C lim X-C X-C X-C f(x) g(x) = lim[ƒ(x)]" = = , M = 0 I n a positive integer 7. Root Rule lim: f(x) = X-C (If n is even, we assume that f(x) ≥ 0 for x in an interval containing c.) Note: If L or M are not finite, then these rules do not apply! n a positive integer I

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Limit Laws**

If \( L, M, C, \) and \( k \) are real numbers and \(\lim_{x \to c} f(x) = L\) and \(\lim_{x \to c} g(x) = M\), then:

1. **Sum Rule**  
   \(\lim_{x \to c} (f(x) + g(x)) = L + M\)

2. **Difference Rule**  
   \(\lim_{x \to c} (f(x) - g(x)) = L - M\)

3. **Constant Multiple Rule**  
   \(\lim_{x \to c} (k \cdot f(x)) = kL\)

4. **Product Rule**  
   \(\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M\)

5. **Quotient Rule**  
   \(\lim_{x \to c} \left(\frac{f(x)}{g(x)}\right) = \frac{L}{M}\), \(M \neq 0\)

6. **Power Rule**  
   \(\lim_{x \to c} (f(x))^n = L^n\), \(n\) a positive integer

7. **Root Rule**  
   \(\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L}\), \(n\) a positive integer

(Note: If \( n \) is even, we assume that \( f(x) \geq 0 \) for \( x \) in an interval containing \( c \).)

**Note:** If \( L \) or \( M \) are not finite, then these rules do not apply.
Transcribed Image Text:**Limit Laws** If \( L, M, C, \) and \( k \) are real numbers and \(\lim_{x \to c} f(x) = L\) and \(\lim_{x \to c} g(x) = M\), then: 1. **Sum Rule** \(\lim_{x \to c} (f(x) + g(x)) = L + M\) 2. **Difference Rule** \(\lim_{x \to c} (f(x) - g(x)) = L - M\) 3. **Constant Multiple Rule** \(\lim_{x \to c} (k \cdot f(x)) = kL\) 4. **Product Rule** \(\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M\) 5. **Quotient Rule** \(\lim_{x \to c} \left(\frac{f(x)}{g(x)}\right) = \frac{L}{M}\), \(M \neq 0\) 6. **Power Rule** \(\lim_{x \to c} (f(x))^n = L^n\), \(n\) a positive integer 7. **Root Rule** \(\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L}\), \(n\) a positive integer (Note: If \( n \) is even, we assume that \( f(x) \geq 0 \) for \( x \) in an interval containing \( c \).) **Note:** If \( L \) or \( M \) are not finite, then these rules do not apply.
Expert Solution
Step 1: Concept used in the solution

We solve the given problem by using the concept of limits.

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning