Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![The image contains two mathematical limit expressions related to natural logarithms and trigonometric functions. Below is the transcription and a detailed explanation suitable for an educational website:
---
**Mathematical Limits involving Natural Logarithms and Trigonometric Functions**
In this section, we will explore the behavior of natural logarithmic functions involving trigonometric expressions as the variable \( x \) approaches a specific value from the left. We consider the following limits:
1. **Limit of the Natural Logarithm of the Tangent Function**
\[
\lim_{x \to \pi^-} \ln(\tan x)
\]
This expression is concerned with the limit of the natural logarithm of the tangent function, \(\ln(\tan x)\), as the variable \( x \) approaches \(\pi\) from the left side (\(\pi^-\)).
2. **Limit of the Natural Logarithm of the Cosecant Function**
\[
\lim_{x \to \pi^-} \ln(\csc x)
\]
This expression focuses on the limit of the natural logarithm of the cosecant function, \(\ln(\csc x)\), as the variable \( x \) approaches \(\pi\) from the left side (\(\pi^-\)).
**Conceptual Explanation:**
- **Tangent Function (\(\tan x\)):** Tangent is periodic with singularities (undefined points) at \(x = \frac{\pi}{2} + k\pi\) for \(k \in \mathbb{Z}\). As \( x \) approaches \(\pi\) from the left, \(\tan x\) approaches zero.
- **Cosecant Function (\(\csc x\)):** The cosecant function, which is the reciprocal of the sine function (\(\csc x = \frac{1}{\sin x}\)), has singularities at integer multiples of \(\pi\). As \( x \) approaches \(\pi\) from the left, \(\sin x\) approaches zero, making \(\csc x\) approach infinity.
These detailed considerations assist in understanding how logarithmic functions behave in conjunction with trigonometric functions close to their critical points.
---
This content should help students grasp the concept of limits involving natural logarithms and trigonometric functions as they approach particular values.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffe7817cb-5274-4434-90ec-13ab480c973d%2Fd6b5e2cf-b145-467f-81fd-cb04b89dcafc%2Fmdhkbsh_processed.png&w=3840&q=75)
Transcribed Image Text:The image contains two mathematical limit expressions related to natural logarithms and trigonometric functions. Below is the transcription and a detailed explanation suitable for an educational website:
---
**Mathematical Limits involving Natural Logarithms and Trigonometric Functions**
In this section, we will explore the behavior of natural logarithmic functions involving trigonometric expressions as the variable \( x \) approaches a specific value from the left. We consider the following limits:
1. **Limit of the Natural Logarithm of the Tangent Function**
\[
\lim_{x \to \pi^-} \ln(\tan x)
\]
This expression is concerned with the limit of the natural logarithm of the tangent function, \(\ln(\tan x)\), as the variable \( x \) approaches \(\pi\) from the left side (\(\pi^-\)).
2. **Limit of the Natural Logarithm of the Cosecant Function**
\[
\lim_{x \to \pi^-} \ln(\csc x)
\]
This expression focuses on the limit of the natural logarithm of the cosecant function, \(\ln(\csc x)\), as the variable \( x \) approaches \(\pi\) from the left side (\(\pi^-\)).
**Conceptual Explanation:**
- **Tangent Function (\(\tan x\)):** Tangent is periodic with singularities (undefined points) at \(x = \frac{\pi}{2} + k\pi\) for \(k \in \mathbb{Z}\). As \( x \) approaches \(\pi\) from the left, \(\tan x\) approaches zero.
- **Cosecant Function (\(\csc x\)):** The cosecant function, which is the reciprocal of the sine function (\(\csc x = \frac{1}{\sin x}\)), has singularities at integer multiples of \(\pi\). As \( x \) approaches \(\pi\) from the left, \(\sin x\) approaches zero, making \(\csc x\) approach infinity.
These detailed considerations assist in understanding how logarithmic functions behave in conjunction with trigonometric functions close to their critical points.
---
This content should help students grasp the concept of limits involving natural logarithms and trigonometric functions as they approach particular values.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 1 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning