Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
q2
![### Problem Statement
2. Evaluate the following limits:
\[ \lim_{x \to -2} 7x + 3. \]
### Explanation
The expression asks for the evaluation of the limit of the linear function \(7x + 3\) as \(x\) approaches \(-2\). In this context, since \(7x + 3\) is a polynomial function, it is continuous everywhere. Therefore, the limit can be found by direct substitution of \(-2\) into the expression.
### Solution
1. Substitute \(x = -2\) into the equation:
\[
7(-2) + 3 = -14 + 3 = -11.
\]
Therefore, the limit is \(-11\).
### Additional Notes
For linear functions like \(7x + 3\), limits can be evaluated directly by substitution because these functions are continuous across their entire domain. This provides a straightforward and efficient approach to finding limits for polynomial functions.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5e422df6-8ba9-49fe-b437-5f3f14519581%2Fc0340a25-41b3-457a-b49f-0c343453da2c%2Fqacz16j_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Problem Statement
2. Evaluate the following limits:
\[ \lim_{x \to -2} 7x + 3. \]
### Explanation
The expression asks for the evaluation of the limit of the linear function \(7x + 3\) as \(x\) approaches \(-2\). In this context, since \(7x + 3\) is a polynomial function, it is continuous everywhere. Therefore, the limit can be found by direct substitution of \(-2\) into the expression.
### Solution
1. Substitute \(x = -2\) into the equation:
\[
7(-2) + 3 = -14 + 3 = -11.
\]
Therefore, the limit is \(-11\).
### Additional Notes
For linear functions like \(7x + 3\), limits can be evaluated directly by substitution because these functions are continuous across their entire domain. This provides a straightforward and efficient approach to finding limits for polynomial functions.
Expert Solution

Step 1
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning