Lightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in the figure below. Assume the dome has a diameter of 40.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 x 106 V/m. (a) What is the maximum potential of the dome? kV (b) What is the maximum charge on the dome?
Lightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in the figure below. Assume the dome has a diameter of 40.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 x 106 V/m. (a) What is the maximum potential of the dome? kV (b) What is the maximum charge on the dome?
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images