lf f(x) = -[-² 0 u²-6u +5du, then what is the y-coordinate of its inflection point? Selected Answer: -3

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Problem Statement

Given the function \( f(x) = \int_{0}^{x} (u^2 - 6u + 5) \, du \), determine the y-coordinate of its inflection point.

### Solution

The selected answer is: \(-3\).

### Explanation

1. **Understanding the Function**: The given function \( f(x) \) is defined as an integral function:
   \[
   f(x) = \int_{0}^{x} (u^2 - 6u + 5) \, du
   \]

2. **Step-by-Step Approach**:
   
   - **Determine \( f(x) \)**: Integrate \( u^2 - 6u + 5 \) with respect to \( u \) from \( 0 \) to \( x \):
     \[
     \int_{0}^{x} (u^2 - 6u + 5) \, du = \left[ \frac{u^3}{3} - 3u^2 + 5u \right]_{0}^{x} = \frac{x^3}{3} - 3x^2 + 5x
     \]
     So, \( f(x) = \frac{x^3}{3} - 3x^2 + 5x \).
     
   - **Find the First Derivative \( f'(x) \)**: Differentiate \( f(x) \) with respect to \( x \):
     \[
     f'(x) = x^2 - 6x + 5
     \]
     
   - **Find the Second Derivative \( f''(x) \)**: Differentiate \( f'(x) \) with respect to \( x \):
     \[
     f''(x) = 2x - 6
     \]
     
   - **Determine Inflection Point**: An inflection point occurs where \( f''(x) = 0 \):
     \[
     2x - 6 = 0 \quad \Rightarrow \quad x = 3
     \]
     
   - **Find the y-coordinate**:
     \[
     f(3) = \frac{3^3}{3} - 3(3^2) + 5(3) = 9 - 27 + 15 = -3
Transcribed Image Text:### Problem Statement Given the function \( f(x) = \int_{0}^{x} (u^2 - 6u + 5) \, du \), determine the y-coordinate of its inflection point. ### Solution The selected answer is: \(-3\). ### Explanation 1. **Understanding the Function**: The given function \( f(x) \) is defined as an integral function: \[ f(x) = \int_{0}^{x} (u^2 - 6u + 5) \, du \] 2. **Step-by-Step Approach**: - **Determine \( f(x) \)**: Integrate \( u^2 - 6u + 5 \) with respect to \( u \) from \( 0 \) to \( x \): \[ \int_{0}^{x} (u^2 - 6u + 5) \, du = \left[ \frac{u^3}{3} - 3u^2 + 5u \right]_{0}^{x} = \frac{x^3}{3} - 3x^2 + 5x \] So, \( f(x) = \frac{x^3}{3} - 3x^2 + 5x \). - **Find the First Derivative \( f'(x) \)**: Differentiate \( f(x) \) with respect to \( x \): \[ f'(x) = x^2 - 6x + 5 \] - **Find the Second Derivative \( f''(x) \)**: Differentiate \( f'(x) \) with respect to \( x \): \[ f''(x) = 2x - 6 \] - **Determine Inflection Point**: An inflection point occurs where \( f''(x) = 0 \): \[ 2x - 6 = 0 \quad \Rightarrow \quad x = 3 \] - **Find the y-coordinate**: \[ f(3) = \frac{3^3}{3} - 3(3^2) + 5(3) = 9 - 27 + 15 = -3
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning